
6. PARAMETER ESTIMATION AND MODEL VALIDATION

6.1 Overview

6.1.1 Chapter Contents

This chapter is the heart of the parameter-estimation
portion of this handbook. Section 6.1 gives an impor-
tant discussion of Bayesian and frequentist inference,
and also a brief discussion of some topics outside the
scope of the handbook. The rest of Chapter 6 presents
statistical techniques for analyzing data for various
parameters. Sections 6.2 through 6.7 cover exactly the
same types of data as Sections 2.2 through 2.6, in the
same order. The two kinds of failure to start in Section
2.3 are split into two sections here, 6.3 and 6.4. The
three most extensive and fundamental sections are 6.2
(initiating events), 6.3 (failures on demand), and 6.6
(recovery times and other durations). The remaining
sections draw on material from these three. Figure 6.1
shows the contents in a schematic way, with arrows
indicating the logical dependencies. For example,
Section 6.4 uses material presented in Sections 6.2 and
6.3.

Each section considers both parameter estimation and
model validation. These two topics are considered

together because checking the assumptions of the model
(model validation) is a necessary part of any analysis.
Separating the model validation from the parameter
estimation might give the erroneous impression that it
is all right to estimate parameters without checking the
assumptions, or that the checks can be performed as an
afterthought.

Under parameter estimation, both Bayesian and
frequentist methods are presented. Under model valida-
tion, both graphical methods and formal statistical tests
are given.

Much thought was given to the order of presentation: do
we present the Bayesian estimates first or the
frequentist estimates? In Chapter 6, the frequentist
estimates are typically given first, not because they are
more important or more highly recommended, but only
because the frequentist point estimates are very simple,
the simplest most natural estimates that someone might
try. We cover them quickly before moving on to the
more sophisticated Bayesian estimates. In the cases
where the frequentist estimates are not simple (such as
certain distribution models for durations), Bayesian
estimation is discussed first.

I Portions of Chapter 2

6.2 Initiating Events
6.2.1 Frequentist Estimation
6.2.2 Bayesian Estimation
(many priors considered)
6.2.3 Model Validation

6.3 Failure to Change State:
Failure on Demand

6.3.1 Frequentist Estimation
6.3.2 Bayesian Estimation
(many priors considered)
6.3.3 Model Validation

6.6 Durations
6.6.1 Characterization of
Distributions
6.6.2 Model Validation
6.6.3 Nonparametric Density
Estimation

I I

Figure 6.1. Schematic outline of Chapter 6.
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As in much of this handbook, general explanations are
given in Roman typeface, with boldface used for new
terms where they are introduced or defined. Arial font
is used for examples, and for any extended discus-
sion that applies only to a particular example.

6.1.2 Bayesian and Frequentist Inference

Probabilistic risk assessment (PRA) analyzes accident
sequences in terms of initiating events, basic events,
and occasionally recovery events.

This handbook is concerned with estimating the fre-
quencies of initiating events, the probabilities of basic
events, and the distributions of recovery times and other
durations. These estimates are propagated through
logical relations to produce an estimated frequency of
the undesirable end state, such as core damage. More-
over, the uncertainties in the parameter estimates must
be quantified, and this must be done in a way that
allows the uncertainty in the final estimate to be quanti-
fied.

Two approaches to estimating parameters are the
Bayesian method and the frequentist, or classical,
method. The two approaches are summarized here, and
also in Appendix B.

Both approaches use probability distributions to de-
scribe the behavior of random outcomes, such as a
random number of initiating events or a random number
of failures to start. The two approaches differ in the
way they treat uncertainty of unknown parameters.

In the Bayesian setting, probability is a measure of
uncertainty, a quantification of degree of belief. The
Bayesian methodology is used to modify uncertainty in
a logically coherent way, so that "degree of belief' is
rational, not merely personal opinion. In this methodol-
ogy, each unknown parameter is assigned an initial
prior probability distribution. This does not mean that
the parameter varies randomly, but only that it is
unknown, with the probability distribution modeling
belief concerning the true value. Based on data, the
analyst's prior belief about the parameter is updated,
using Bayes' Theorem. The final inference statement
uses the posterior distribution of the parameter to
quantify the final uncertainty about the parameter. It is
conditional on the observed data. Siu and Kelly (1998)
give a simple but thorough introduction to Bayesian
estimation in the PRA context.

The frequentist approach is quite different. The proba-
bility of a random event is defined as the long-term
fraction of times that the event would occur, in a large

numberof trials. Probabilities are used only for random
quantities, the possible data values. Probability distri-
butions are never used to describe parameters, because
the parameters are not random. When quantifying
uncertainty in an estimate, a frequentist asks questions
such as, "Under similar conditions, what other data sets
might have been generated? From data set to data set,
how much variation would be seen in the parameter
estimate? For any one data set, how far might the
estimated parameter be from the true parameter?" Any
prior or external information about the parameter value
is ignored.

Statisticians have argued vigorously over which ap-
proach is preferable. When estimating parameters for
PRA, the Bayesian approach clearly works better, for
two reasons. First, data from reliable equipment are
typically sparse, with few or even zero observed fail-
ures. In such cases, it is reasonable to draw on other
sources of information. The Bayesian approach pro-
vides a mechanism for incorporating such information
as prior belief. Second, the Bayesian framework allows
straightforward propagation of basic event uncertain-
ties through a logical model, to produce an uncertainty
on the frequency of the undesirable end state. To do
this, it assigns a probability distribution to each of the
unknown parameters, draws a random sample from
each, and constructs the corresponding sample for the
frequency of the undesirable end state. The frequentist
approach cannot handle such complicated propagation
of uncertainties except by rough approximations.

Frequentist methods have their uses, however, even in
PRA. Box (1980) writes "sampling theory [the
frequentist approach] is needed for exploration and
ultimate criticism of an entertained model in the light of
current data, while Bayes' theory is needed for estima-
tion of parameters conditional on the adequacy of the
entertained model." This viewpoint agrees with current
PRA practice. The primary use of the frequentist
approach is in preliminary examination of the data, to
check the correctness of model assumptions, and to
decide which model to use. For example, frequentist
methods can help the analyst decide whether data sets
may be pooled or whether a trend is present.
Goodness-of-fit tests and calculation of statistical
significance are commonly used frequentist tools in this
context. Then Bayesian methods are used for estimat-
ing the parameters. In addition, frequentist estimates
are often simpler to calculate than Bayesian estimates,
and therefore are useful for rough approximate calcula-
tions.

Table 6.1 summarizes the above points.
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Table 6.1 Comparison of Bayesian and frequentist approaches in PRA.

I Frequentist Bayesian

Interpretation of probability Long-term frequency after many Measure of uncertainty,
l_______________________ hypothetical repetitions. quantification of degree of belief.

Unknown parameter Constant, fixed. Constant, but assigned probability dis-
tribution, measuring current state of
belief.

Data Random (before being observed). Random for intermediate
calculations. Fixed (after being
observed) for the final conclusions.

Typical estimators Maximum likelihood estimator (MLE), Bayes posterior mean, credible
confidence interval. interval.

Interpretation of 90% If many data sets are generated, 90% of We believe, and would give 9 to 1
interval for a parameter the resulting confidence intervals will odds in a wager, that the parameter is

contain the true parameter. We do not in the interval.
know if our interval is one of the
unlucky ones.

Primary uses in PRA 1. Check model assumptions. 1. Incorporate evidence from various
2. Provide quick estimates, without sources, as prior distribution.
work of determining and justifying 2. Propagate uncertainties through
prior distribution. fault-tree and event-tree models.

6.1.3 Uncertainties Other Than
Parametric Uncertainty

The above discussion might suggest that uncertainty in
the value of parameters is the only uncertainty there is.
That is not the case. Parameter uncertainty, stemming
from having only a relatively small set of randomly
generated data, is the simplest uncertainty to address.
It is the primary uncertainty considered in this
handbook of parameter estimation. However, the
following kinds of uncertainty can also be considered.
Because these subsections discuss material that is
outside the scope of the handbook, first-time readers
may wish to skip immediately to Section 6.2.

6.13.1 Uncertainty from Nonrepresentativeness
of the Data Sources

One issue to consider is that the data come from settings
that do not perfectly match the problem of interest. In
general, this is a difficult issue. For example, suppose
one situation is of interest, but the data come from
equipment with a different manufacturer or different

design, or from equipment operated under different
conditions, or maintained with different practices. Then
it is difficult to quantify the relationship between the
data and the problem of interest. Engineeringjudgment
is used, and to be conservative the uncertainty
distribution is often assigned a larger variance than the
data alone would call for.

One tractable case is uncertainty of the value of a
parameter for one data source (such as one nuclear
power plant), when data are available from many
similar but not identical data sources (other nuclear
power plants). This case can be formulated in terms of
a hierarchical model, and analyzed by empirical Bayes
or hierarchical Bayes methods, as discussed in Chapter
8 of this handbook.

6.13.2 Uncertainty in the Data Counts
Themselves

There can be uncertainty in the data counts themselves.
For example: it may be unclear whether a particular
event should be counted as a failure, or the number of
demands may not be known exactly. A Bayesian
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method for dealing with uncertainty in PRA data was
first proposed by Siu and Apostolakis (1984,1986), and
has been used by several authors, including Mosleh
(1986), Mosleh et al. (1988, Section 3.3.4.4), and Martz
and Picard (1995). As outlined by Atwood and Gentil-
Ion (1996), uncertainty in classifying the data yields a
number of possible data sets, each of which can be
assigned a subjective probability. The simple approach
is to use an "average" data set, a "best estimate" of the
data, and analyze it. The uncertainty in the data is
ignored, lost, at that point. A better approach is to
analyze each data set, and combine the results. Each
analysis produces a Bayesian distribution for the
unknown parameter(s), and the final result is a mixture
of these distributions. This approach includes the data
uncertainty in the analysis, and results in wider
uncertainty intervals than the simple approach. The two
approaches are diagramed in Figure 6.2.

extensively. However, model validation, which
concludes that the model is either "adequate" or "not
adequate," is only a first step toward addressing this
issue.

A more ambitious approach would be to quantify the
degree of belief in each of a number of models, and
propagate uncertainty in the models into the overall
conclusions. This approach can use the predictions of
various models as evidence in a formal Bayesian
estimation procedure. See Mosleh et al. (1994) for a
number of thoughtful papers on the definition and
treatment of model uncertainties in the context of PRA
applications. The topic is also discussed and debated in
a tutorial article by Hoeting et al. (1999). Bernardo and
Smith (1994) also work out this approach in their
Chapter 6 on "remodelling." Drougett (1999) includes
a discussion on the role of information concerning the
models themselves (for example, their structure and
past performance) in the estimation process.

Further consideration of such issues is beyond the scope
of this handbook. The parameter uncertainties given
here all assume that the model is a perfect description
of the real world.

6.2 Initiating Events

This section and Section 6.3 are fundamental. The
methods introduced here are used throughout the rest of
the handbook. The most important topics for a first-
time reader are:

* Maximum likelihood estimation (6.2.1.1),
* Bayesian estimation, especially with a discrete

prior or a conjugate prior (6.2.1-6.2.2.5), and
* Model validation, especially using graphical tools

(portions of 6.2.3).

Many possible data sets,
with subjective probabilities

Many analysis results Mean data set

Mean of results

Averaging the
analyses accounts for
more uncertainty.

Results from analysis
of one data set

Analyzing the
average accounts for

less uncertainty.

Figure 6.2 Two possible analysis paths for uncertain
data.

Data uncertainty has become the subject of recent
journal articles, such as the by Martz and Hamada
(2003), who develop a fully Bayesian method. Also,
this topic is closely related to a statistical technique
called "multiple imputation" (see Rubin 1996), in which
a moderate number of data sets are randomly generated
and then treated according to the left path in Figure 6.2.
Further treatment of this topic is beyond the scope of
this handbook, but the reader can find additional
guidance in the references cited above.

6.1.33 Uncertainty in the Correct Model to Use

There can be uncertainty in which probability model to
use. For example, there may be a slight trend, but it is
borderline. Should a trend be modeled'? Chapters 6
and 7 of this handbook discuss model validation

Initiating events here use the broad definition of the
examples in Section 2.2, events that occur randomly in
time and that initiate a quick response to restore the
system to normal.

The event frequency is denoted A, with units events per
unit time. The data consist of x observed events in time
t, where x is an integer 2 0 and t is some time > 0.
Note, t is considered nonrandom, and x is randomly
generated. This can be expressed using the notation
given in Appendix A, with upper case letters denoting
random variables and lower case letters denoting
numbers. Before data had been generated, the random
number of initiating events would have been denoted by
X. For any particular number x, the probability of x
initiating events in time t is

Pr(X = x) = e -(kIylx! . (6.1)
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This formula for the Poisson distribution is a
restatement of Equation 2.1, and will be used through-
out this section.

The methods of parameter estimation will be illustrated
by the following hypothetical data set.

A = 1/42800 = 2.3E-5 events per critical-hour .

Converting the hours to 42800/8760 = 4.89 critical-
years yields

A = 1/4.89 = 0.20 events per critical-year.
Example 6.1 Initiating events with loss of

heat sink.

In the last six years (during which the reactor was
critical for 42800 hr.) a hypothetical PWR has had
one initiating event that involved a loss of heat
sink. The parameter to estimate is A, the
frequency of such events while the reactor is
critical.

0.0 '-

6.2.1 Frequentist or Classical Estimation

As explained in Section 6.1, Bayesian estimation
methods are more important in PRA, but the classical
estimator has a simpler form. Also, the comparison
among estimators flows somewhat better if the short
presentation of frequentist estimators precedes the
lengthier presentation ofBayesian estimators. For these
reasons, frequentist methods are given first in this
section.

62.1.1 Point Estimate

0.0 2.-5 4.-5 6S-5 3-5 1*.4
A (Wir)

Figure 6.3 Ukelihood as a function of A, for data of
Example 6.1.

In the above example, and in general throughout this
handbook, the final answer is presented with few
significant digits. This reflects the uncertainty inherent
in all estimates. Indeed, sometimes not even the first
significant digit is known precisely. During
intermediate calculations, however, more significant
digits will be shown, and used. This prevents roundoff
errors from accumulating during the calculations.

The most commonly used frequentist estimate is the
maximum likelihood estimate (MNLE). It is found by
taking the likelihood, given by Equation 6.1, and
treating it as a function of Al. The value of A that
maximizes the likelihood is called the M1E. It can be
shown (as a calculus exercise) that the maximum
likelihood estimate (MLE) of A is

A =x /t .

It is also possible to combine, or pool, data from
several independent processes, each having the same
rate A. In particular, suppose that the ith Poisson
process is observed for time t8, yielding the observed
count x, The total number of event occurrences is x =
2,x,, where the sum is taken over all of the processes,
and the exposure time is t = El,. The rate A is estimated
by

A = Xlt = ZiX 7IZt,.

For example, if counts obtained for different years are
used to estimate the rate, the estimate is the ratio of the
total count to the total exposure time during these years.

6.2.1.2 Standard Deviation of the Estimator

(6.2)

This formula is simple and intuitively natural: the
observed number of events divided by the observed
time period. This simplicity is part of the appeal of the
MLE. The hat notation is used to indicate that the NLE
is an estimate calculated from the data, not the true,
unknown A.

Example 6.1 has x = 1 and t = 42800 hrs. The
likelihood is plotted on Figure 6.3 as a function of A.

The likelihood function is maximized when A =
1/42800 = 2.3E-5. Therefore, the estimated event
rate for the plant is

The event count is random. In other words, if an
identical plant could be observed during the same years,
a different number of events might occur due to
randomness. Similarly, the same plant might yield a
different count over a different six-year period.
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Because the event count is random, the estimator is also
random, and the estimate is simply the observed value
for this plant during these years. Note the distinction in
the terms: an estimator is a random variable, and an
estimate is the particular value of the estimator after the
data have been generated.

For a Poisson distributed random variable X, the mean
and variance are the same, E(X) = var(X) = At, as stated
in Appendix A.6.2. Consequently, the standard
deviation of X is (AtV), and the estimated standard

deviation of the estimator A - X/t is

(11 2 = x1/2 X

The estimated standard deviation of A is also called the
standard error for 1.

Thus, the standard error for A in Example 6.1 is
1/4.89 = 0.20 events per reactor-year.

A standard error is sometimes used for quick approxi-
mations when the data set is large. In that case, the
MILE is approximately normal, and an approximate
95% confidence interval is given by MLE +

2x(standard error). This approximation holds for
maximum likelihood estimation of virtually any
parameter, when the date set is large. For event
frequencies, however, the following exact confidence
interval can be found.

6.2.1.3 Confidence Interval for A

Frequentist estimation is presented before Bayesian
estimation because the MLE is so simple, simpler in
form than the Bayes estimates. The same cannot be
said for confidence intervals; the confidence-interval
formulas are somewhat more complicated than the
formulas for Bayesian interval estimates, and the
interpretation of confidence intervals is more subtle.
Confidence intervals are used in two ways in this
handbook: they give a standard of comparison, when
Bayes credible intervals are found based on so-called
noninformative priors, and they can be used (but are not
required) in some plots for validating model
assumptions. Therefore, readers may wish to skim the
present section quickly on the first reading.

The confidence interval is given in many reference
books, such as Johnson, Kotz, and Kemp (1992, Sec.
7.3), Bain and Engelhardt (1992, Section 11.4), or
Martz and Waller (1991, Table 4.4). It is based on the
chi-squared (or in symbols, e) distribution, which is

tabulated in Appendix C, and which can be found easily
by many software packages. As used below, e.,(d) is
the pth quantile, or (lOOp)th percentile, of the chi-
squared distribution with ddegrees of freedom. Do not
misread e,(d) as involving multiplication.

For a (I - a) confidence interval, or equivalently a
100(1 - a)% confidence interval, the lower limit is

X2 (~2x)
conf. a12 -a22

If x = 0, this formula is undefined, but then simply set
Runoff cn = 0.

Similarly, the upper limit is

2
A ~~Xl a/2( X+2

Aconf. J-a12 = 2

Notice that an upper confidence limit is defined in the
case x = 0. It is reasonable that observing no
occurrences of the event would provide some
information about how large At might be, but not about
how small it might be.

The above formulas are in terms of a. Setting ar = 0. 1,
for example, gives the formulas for a 90% confidence
interval. These formulas involves the 5th percentile of
a chi-squared distribution with 2x degrees of freedom,
and the 95th percentile of a chi-squared distribution
with (2x+2) degrees of freedom.

The resulting confidence interval is conservative in the
sense that the actual confidence level is no smaller than
the nominal level of 100(1 - a)%, but it could be
larger. This conservatism is inherent in confidence
intervals based on discrete data.

In Example 6.1, Table C.2
confidence limits are

shows that 90%

ZX0.o5 (2) 0.103
2 x 4.89 9.78

AXO95 (4) 9.488
Aw&0.95 = =- =09

2 x 4.89 9.78

with units events per critical-year.
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The interpretation of confidence intervals is given in
Appendix B. This interpretation deserves emphasis, so
we elaborate on the topic here. In the frequentist
approach, A is fixed and the data are random.
Therefore, the maximum likelihood estimator and the
confidence limits are all random. For most data sets the

MLE, A , will be close to the true value of A, and the
confidence interval will contain A. Sometimes,
however, the MLE will be rather far from A, and
sometimes (less than 10% of the time) the 90% confi-
dence interval will not contain A. The procedure is
good in the sense that most of the time it gives good
answers, but the analyst never knows if the current data
set is one of the unlucky ones.

To illustrate this, consider the following example with
many hypothetical data sets from the same process.

The data analyst will normally have data from just
one plantforthe six-year period. The resulting confi-
dence interval will contain the true value of A, unless
the data happen to deviate greatly from the mean.
Unfortunately, the analyst does not know when this
has happened, only that it does not happen often.

-

Example 6.2 Confidence Intervals from
computer-generated data.

Event

10
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7
10
9
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7
9
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5
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.0
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p

6.

4

p

p

p

I p

:0

S

* I . ?I .1....

A computer was used to generate Poisson data,
assuming an event rate A = 1.2 events per year
and assuming that 6 years were observed. Thus,
the event count followed a Poisson distribution
with mean At = 7.2. This was repeated, and 40
event counts were generated in all. These may
be interpreted as counts from 40 identical plants,
each observed for 6 years, or from 40 possible
six-year periods at the same plant.

Figure 6.4 shows that the first randomly generated
event count was 10, the next was 5, the next was
again 10, and so on. Some of the event counts were
less than the long-term mean of 7.2, and some were
greater. The maximum likelihood estimates of A are
plotted as dots in Figure 6.4. The corresponding
90% confidence intervals for A are also plotted.

In Figure 6.4, the vertical dashed line shows the true
value of A, 1.2. Two of the 40 intervals (5%/6) are to
the right of the true A. These resulted from observing
event counts of 14 and 16. One of the 40 intervals
(2.5%) is to the left of the true A. This interval was
computed from an observed event count of two.

Ideally, the error rates should both be 5%. They are
not, for two reasons. First, 40 is not a very large
number, so the random data do not exactly follow the
long-run averages. Second, confidence intervals
with discrete data are inherently conservative: a 90%
confidence interval is defined so that the probability
of containing the true A is at least 90%, and the error
probabilities at each end are each at most 5%.

.................... ~~~~~~~~~~~~~~~~~~~~~~~~~~~.
0 2 3 4

A (eveu)tA)

Figure 6.4 Confidence intervals from random data, all
generated from the same process.

6.2.2 Bayesian Estimation

6.221 Overview

Bayesian estimation of 1 involves several steps. The
prior belief about A is quantified by a probability distri-
bution, the prior distribution. This distribution will be
restricted to the positive real line, because A must be
positive, and it will assign the most probability to the
values of A that are deemed most plausible. The data
are then collected, and the likelihood function is
constructed. This is given by Equation 6.1 for initiating
events. It is the probability of the observed data,
written as a function of A. Finally, the posterior
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distribution is constructed, by combining the prior
distribution and the likelihood function through Bayes'
theorem. (For background on Bayes' theorem and
Bayesian estimation, see Appendix A.5 and B.5.1.)
This theorem says that

f,,(A) - likelihood(A) Xfwir(A).

Here, the symbol - denotes "is proportional to." The
posterior distribution shows the updated belief about
the values of A. It is a modification of the prior belief
that accounts for the observed data.

Figure 6.5, adapted from a tutorial article by Siu and
Kelly (1998), shows how the posterior distribution
changes as the data set changes. The figure is based on
a diffuse prior, and on three hypothetical data sets, with
x = I event in t = 10,000 hours, x = 10 events in t =
100,000 hours, and x = 50 events in t = 500,000 hours,

respectively. Note, each of these data sets hasA = xlt
= I.E -4 events per hour. The figure shows the prior
distribution, and the three posterior distributions
corresponding to the three data sets.

400001

bke~hood
Estknate

30000
Prior * 50

100.000 Whr

21000 =1

=L10..X= 1
O~~~~~~~~ -a 10.DOh

0
0 1.E4 2.E-4 3.E4

A (erbnt per hoo GCOW 3

Figure 6.5 Priordistribution and posteriordistributions
corresponding to three hypothetical data sets.

For a small data set, the posterior distribution resembles
the prior to some extent. As the data set becomes
larger, several patterns are evident:

* the posterior distribution departs more and more
from the prior distribution, because the data
contribute the dominant information,

* the posterior distribution becomes more
concentrated, indicating better knowledge of the
parameter, less uncertainty, and

v the posterior distribution becomes approximately

centered around the MLE, i .

To be consistent with the notation for random variables,
upper case letters would be used for uncertain
parameters that have probability distributions. Such
notation is not customary in the Bayesian literature, and
will not be used here. The reader must judge from
context whether the letter 1 denotes a particular value,
or the uncertain parameter with an associated
distribution.

6.2.2.2 Choosing a Prior

The subsections below consider estimation of A using
various possible prior distributions. The simplest prior
distribution is discrete. The posterior can be calculated
easily, for example, by a spreadsheet. The next
simplest prior is called conjugate; this prior combines
neatly with the likelihood to give a posterior that can be
evaluated by simple formulas. Finally, the most general
priors are considered; the posterior distribution in such
a case can only be found by numerical integration or by
random sampling.

The prior distribution should accurately reflect prior
knowledge or belief about the unknown parameter.
However, quantifying belief is not easy. Raiffa and
Schlaifer (1961, Sections 3.3.3-3.3.5) point out that
most people can think more easily in terms of
percentiles of a distribution than in terms of moments.
They also give advice on looking at the situation from
many directions, to make sure that the prior belief is
internally consistent and has been accurately quantified.
Siu and Kelly (1998, Sec. 5.1.4) present seven warnings
in connection with developing a prior distribution,
which are summarized here:

* Beware of zero values. If the prior says that a
value of A is impossible, no amount of data can
overcome this.

* Beware of cognitive biases, caused by the way
people tend to think.

* Beware of generating overly narrow prior distri-
butions.

* Ensure that the evidence used to generate the prior
distribution is relevant to the estimation problem.

* Be careful when assessing parameters that are not
directly observable.

* Beware of conservatism. Realism is the ideal, not
conservatism.

* Be careful when using discrete probability distri-
butions.

For a fuller discussion of these points, see Siu and
Kelly.
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Some priors are chosen to be "noninformative," that is,
diffuse enough that they correspond to very little prior
information. The Jeffreys noninformative prior is
often used in this way. If information is available, it is
more realistic to build that information into the prior,
but sometimes the information is difficult to find and
not worth the trouble. In such a case, the Jeffreys
noninformative prior can be used. It is one of the priors
discussed below.

6.2.2.3 Estimation with a Discrete Prior

When the prior distribution is discrete, the calculations
can easily be performed in a spreadsheet. Newcomers
to Bayesian estimation are strongly encouraged to work
through some examples of the type given here, to
develop a sense of how the process works and how the
posterior distribution depends on the prior and on the
data.

The parameter is assumed to take one of m possible
values, A,, ... ,1,,. Let the probability distribution
function (p.d.f.) be denoted byf, sofiA,) = Pr(Al). This
probability quantifies the analyst's prior belief that each
of the possible values is the one operating in nature.

Then, some evidence is observed, denoted conceptually
by E. Bayes' theorem says that

When the evidence is in the form of x failures generated
by a Poisson process over an operational time t, the
likelihood function is given by Equation 6.1:

L(EIA.)= e (A it
X.

The above equations are illustrated here with several
prior distributions. For data, they all use the first
sample in Example 6.2, 10 events in six years. They
all use simple, flat, prior distributions over a
moderately wide range, but with different degrees of
discreteness. One could argue that this prior is not
very informative, but the real reason we choose it is
to make the impact of the Bayesian updating process
easy to see.

Given the ease of calculation with current computers,
a finely discretized prior (say, at 0, 0.01, 0.02,...6.00)
would give the most'accurate results, and we will
provide that calculation in a moment. First, however,
let us use a very coarse prior at 0, 0.5, 1.0, ...6.0.
With only 13 bins, the reader can perform hand
calculations quite easily. The results are given in
Table 6.2. The prior is discrete, and is shown in
Figure 6.6. The posterior distribution is also discrete,
and is shown in Figure 6.7.

Table 6.2 Example 6.2, first sample (10 events
In 6 years) with coarse prior.

Event Prior Posterior Cumulative
Rate Probability Likelihood Ax L, Probability Probability

A pA i, Pr(AJE) I Pr(AE)

0.0 0.077 0.OOE+O O.OOE+O O.OOE+O O.0OE+O

0.5 0.077 8.10E-4 6.23E-5 2.43E-3 2.43E-3
1.0 0.077 4.13E-2 3.18E-3 1.24E-1 1.26E-1

1.5 0.077 1.19E-1 9.12E-3 3.56E-1 4.82E-1

2.0 0.077 1.05E-1 8.06E-3 3.14E-1 7.96E-1

2.5 0.077 4.86E-2 3.74E-3 1.461-1 9.42E-1

3.0 0.077 1.50E-2 1.15E-3 4.49E-2 9.87E-1

3.5 0.077 3.49E-3 2.68E.4 1.05E.2 9.98E-1

4.0 0.077 6.602-4 5.07E-5 1.98E-3 1.00E+0

4.5 0.077 1.07E-4 8.20E4 3.20E-4 1.00E+0

5.0 0.077 1.52E-5 1.17E-6 4.57E-5 1.00E+O

5.5 0.077 1.97E-6 1.51E-7 5.90E-6 1.00E+0

6.0 0.077 2.34E-7 1.80E-8 7.01 E-7 1.00E+0

f(AIE) = Em L(ElA 1)f(Aj)

where

(6.3)

J(A,II E) = the probability of A, given evidence E
(posterior distribution),

J(A1) = the probability of A, prior to having
evidence E ( prior distribution), and

L(E IA)= the likelihood function (probability of the
evidence given A,) .

Note that the denominator in Equation 6.3, the total
probability of the evidence E, is simply a normalizing
constant. Therefore, a more abbreviated form ofBayes'
theorem is

f(AJE,) - f(A^)L(EIA).

This is the form of the theorem that was given in the
overview of Section 6.2.2. 1.

There is some value in plotting both distributions in
the same graph, so they can be compared easily.
In such a plot, the vertical bars fall on top of each
other and are easily confused. Therefore, we draw
the graph by connecting the tops of the bars, in
Figure 6.8.
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Even with such a coarse prior, the evidence is strong
and forces the distribution to peak at about A = 1.5
per year. There is essentially no chance that A is
greater than four or less than 0.5.

If we repeat the calculation with a discrete prior twice
as fine (i.e., on the points 0, 0.25, 0.50, 0.75,...6.00),
the prior now has 25 bins and the results are much
more smooth, as shown in Figure 6.9. These results
are quite smooth, and of course follow the previous
results.

1111111111111
00 I0 20 30 40

lambda (events per year)
0 6s0

Figure 6.6 Coarse discrete prior distribution for A.
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P-a020
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I .
0.0 Io 20 30 40 5s0 0

Iambd. (events per year)

Figure 6.7 Discrete posterior distribution of A based
on 10 events in 6 years.

0 1 2 3 4 5 a

lambda (events per year)

Figure 6.9 Discrete prior and posterior distributions
for 10 events in 6 years, with finely discretized prior.

Finally, let us repeat the calculation for a discrete flat
prior on the points 0, 0.05, 0.10, 0.15,...6.00, i.e., a
121-point grid. This time, the results, shown in
Figure 6.10, are detailed enough to closely
approximate a smooth, continuous distribution.

020

0 1 2 3 4 5 6
lambda (events per year)

Figure 6.8 Discrete prior and posterior distributions
plotted together.

The natural tendency is to think of these curves as
densities, but this is not quite correct because they
are not normalized to integrate to 1.0. Except for that
detail, the curves can be thought of as continuous
approximations of the discrete distribution.

2 3 4
lambda (events per year)

a

Figure 6.10 Discrete prior and posterior distributions
for 10 events in six years, with very finely discretized
prior.
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The spreadsheet calculation is identical with Table
6.2, except for having 121 bins rather than 13. Some
values are summarized in Table 6.3. These
Bayesian results are also compared with the
frequentist estimates obtained from the first sample,
shown earlier in Figure 6.4. The Bayesian posterior
distribution has a mode where the probability
function is maximized, and a mean equal to DiA, 4A).

Table 6.3. Comparison of Bayesian and
frequentist estimates for the data In
Example 6.2.

6.2.2.4.1 Definitions

The conjugate family of prior distributions for Poisson
data is the family of gamma distributions. Two param-
eterizations of gamma distributions are given in Ap-
pendix A.7.6. For Bayesian estimation, the following
parameterization is the more convenient one:

f ()= l, *ieAAOI -)=r(a) (6.4)

Quantity Bayes, Frequentist,
flat prior Figure 6A

Point estimate
(Bayes mode, 1.65 1.73
Bayes mean, 1.833
frequentist MLE)

Lower end of interval
(Bayes 5th percentile, 1.00 0.95
lower confidence limit)

Upper end of Interval
(Bayes 95th percentile, 2.80 2.85
upper confidence limit)

Here, l has units 1/time and fhas units of time, so the
product 4,? is unitless. For example, if A is the
frequency of events per critical-year, 6 has units of
critical-years. The parameter fi is a kind of scale
parameter. That is, ,icorresponds to the scale of l. If
we convert A from events per hour to events per year by
multiplying it by 8760, we correspondingly divide ,fby
8760, converting it from hours to years. The other
parameter, a, is unitless, and is called the shape
parameter. The gamma function, r(a), is a standard
mathematical function, defined in Appendix A.7.6. If
a is a positive integer, r(a) equals (a- i)!

Let A have a gamma uncertainty distribution. In the
present parameterization, the mean of the gamma
distribution, also written as the expected value E(1), is
alfi, and the variance, var(A), is cdfl2 . Note that the
units are correct, units l/time for the mean and l/time2

for the variance.

6.2.2.4.2 Update Formulas

As stated earlier and in Appendix B.5. 1, the posterior
distribution is related to the prior distribution by

These values are compared to the frequentist point
estimate, the MLE. The Bayesian 5th and 95th per-
centiles form a Bayes credible Interval, which is
compared with the frequentist confidence limits
shown at the top of Figure 6.4. The Bayes 90%
interval, based on a flat, essentially noninformative
prior, is slightly more narrow than the frequentist
90% confidence interval.

This concludes the examples for this section. However,
we suggest that the reader make up a data set for
examining the way the posterior distribution responds
to growing evidence. For example, try beginning with
zero failures in year one; then adding two failures in
year two; then zero failures in year three; etc. Also try
a case that does not agree with the prior; for example
five failures in year one; then seven more in year two;
then six in year three. Such examples are given forp in
Section 6.3.2.1, but they are most valuable to someone
who constructs them and works them out, instead of
merely reading about them.

6.2.2.4 Estimation with a Conjugate Prior

We now turn from discrete to continuous prior
distributions. We begin with a very convenient family
of distributions: the conjugate priors.

fPM (A) - Pr(X = x IA)fri0,(A) (6.5)

This is the continuous analogue of Equation 6.3. The
probability of the data is also called the likelihood, in
which case it is considered as a function of the parame-
ter A for a given x. For Poisson data, it is given by
Equation 6.1. The symbol - denotes "is proportional
to." Probability density functions generally have
normalizing constants in front to make them integrate to
1.0. These constants can be complicated, but using

proportionality instead of equality allows us to neglect
the normalizing constants.. Stripped of all the normal-
izing constants, the gamma p.d.f. is

f(A)cc - rlei6
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The gamma distribution and the Poisson likelihood
combine in a beautifully convenient way:

X

-A: Ar a-I -A,
fp1 ,, 1(A) ° e ( A e

oc A e

In the final expression, everything thatdoes not involve
.A has been absorbed into the proportionality constant.
This result is "beautifully convenient," because the
posterior distribution of A is again a gamma distribu-
tion. This is the meaning of conjugate: if the prior
distribution is a member of the family (in this case, the
gamma family), the posterior distribution is a member
of the same family. The update formulas are:

a,051 = X + dxno

,6W5 = I + Fir

This leads to an intuitive interpretation of the prior
parameters: a gamma( a'pru,,,6r Ppr) distribution is equiv-
alent, at least intuitively, to having seen arp1, events in
fl., time units, prior to taking the current data.

Figure 6.5 was constructed in this way. The prior
distribution was gamma(0.2, 10,000). Therefore, the
posterior distributions were gamma( 1.2, 20,000),
gamma( 10.2, 10,000), and gamma(50.2, 5 10,000).

When using these update formulas, be sure that t and
Car have the same units. If one is expressed in hours
and one in years, one of the two numbers must be
converted before the two are added.

The moments of the gamma distribution were men-
tioned previously. The posterior mean is %.J,6p,,S and
the posterior variance is aPoJ//t,)J^

The percentiles of the gamma distribution are given by
many software packages. If you use such software, be
careful to check that it is using the same parameteriza-
tion that is used here! Here are three ways to get the
correct answer. (1) If the software uses the other
parameterization, fool it by inverting your value of fi.
Then check to make sure that the numbers appear
reasonable. (2) A safe method is to have the software
find the percentiles of the gamma(ai, l) distribution.
Then manually divide these percentiles by fl,05. This
ensures that the scale parameter is treated correctly. (3)
As a final alternative, the percentiles of the gamma
distribution can be found from a tabulation of the chi-
squared distribution, possibly interpolating the table.
To do this, denote the (IOOp)th percentile of the poste-

rior distribution by 4l. For example, denote the 95th
percentile by 4 95. The (tOOp)th percentile is given by:

4i = ,(2,X,.)1(2,6,)

where, as elsewhere, j2,(d) is the pth quantile, or
(lOOp)th percentile, of a chi-squared distribution with
d degrees of freedom. Note the presence of 2 in the
numerator and denominator when the chi-squared
distribution is used.

The next section contains examples that use these
update formulas with several priors.

6.2.2.5 Possible Conjugate Priors

6.2.2.5.1 Informative Priors

The prior distribution must come from sources other
than the current data. It might be tempting to use the
data when constructing the prior distribution, but that
temptation must be resisted. Prior distributions are
named "prior" for a reason: they reflect information
that does not come from the current data. Ideally,
generic data provide the basis for prior belief. Generic
data sources are given in Section 4.2.

Consider again Example 6.1, involving initiating
events with loss of heat sink. With no special knowl-
edge about the plant, prior belief about the plant is
reasonably based on the overall industry perfor-
mance, so we use the generic industry distribution as
the prior. Poloski et al. (1 999a) examined initiating-
event data from the nuclear power industry over nine
years. For PWRs, and initiating events involving loss
of heat sink, they determined that the variability of A
across the industry can be described by a gamma
distribution with shape parameter = 1.53, and scale
parameter = 10.63 reactor-critical-years. Regretta-
bly, Table G-1 of the report gives only a mean and a
90% interval, not the distribution and its parameters.
The distribution given here is taken from the unpub-
lished work that formed the basis of the report. The
distribution is a gamma distribution, so the update
formulas given above can be used in the hypothetical
example of this section. The prior distribution is
shown in Figure 6.11.

Now, consider updating this prior with the data from
Example 6.1. To make the units consistent, convert
the 42800 reactor-critical-hours in the example to
42800/8760 = 4.89 reactor-crifical-years. The update
formula yields:

ap = x + ape =1 + 1.53 = 2.53

9 = t +As = 4.89 + 10.63 = 15.52 reactor critical-
years.

I !
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Figure 6.11 Prior density for A, gamma(1.53, 10.63).

The mean, ap/flp.,, is 0.163 events per reactor-
critical-year, the variance is 0.0105 (per reactor-
critical-year squared), and the standard deviation is
the square root of the variance, 0.102 per reactor-
critical-year.

A 90% credible interval is the interval from the 5th to
the 95th percentiles of the posterior distribution. A
software package finds the two percentiles of a
gamma(2.53, 1.0) distribution to be 0.5867 and
5.5817. Division by P, yields the two percentiles of
the posterior distribution: 0.038 and 0.36. Altema-
tively, one may interpolate Table C.2 of Appendix C
to find the percentiles of a chi-squared distribution
with 5.06 degrees of freedom, and divide these
percentiles by 2A.,. Linear interpolation gives
answers that agree to three significant digits with the
exact answers, but if the degrees of freedom had not
been so close to an integer, the linear interpolation
might have introduced a small inaccuracy.

The interpretation of the above numbers is the
following. The best belief is that A is around 0.16,
although it could easily be somewhat larger or
smaller. Values as small as 0.038 or as large as
0.36 are possible, but are approaching the limits of
credibility.

Two graphical ways of presenting this information
are given below. Figure 6.12 shows the posterior
density. The areas to the left of the 5th percentile
and to the right of the 95th percentile are shaded.
The 90%h credible interval Is the interval in the mid-
dle, with probability 90%. Figure 6.13 shows the
same information using the cumulative distribution.
The 5th and 95th percentiles are the values of A
where the cumulative distribution is 0.05 and 0.95,
respectively. These percentiles are the sarne values,
as shown in the plot of the density.

0 0.1 0.2 0.3 0.4 0.5 0.6
X (events/reactor-crit.-yr.) GM9 1Om

Figure 6.12 Posterior density of A, gamma(2.53,
15.52), for Example 6.1 with industry prior. The 5th
and 95th percentiles are shown.

1.0

0.9
0.8
0.7.

\ 0.6 0
< 0.5

~OA
0.3
0.2
0.1

0.0 .. ..
0.0 0.1 0.2 0.3 0.4 0.5 0.6

I (eventsfeactor-aiL-yr.) acMUM10

Figure 6.13 Posterior cumulative distribution of A
for Example 6.1 with industry prior. The 5th and
95th percentiles are shown.

For PRA applications, however, the right tail is
typically of concern for risk, corresponding to high
initiating event frequency (or, in other sections of this
chapter, high probability of failure on demand, high
unavailability, or long time to recovery). The interval
given above holds the error probability for the right
tail equal to 0.05. This number is customary in much
statistical practice, and has therefore been used in
many studies for the NRC. The lower end of the
interval, on the other hand, is not of great safety
concern. It is easy to calculate, however. Therefore,
the above 90% interval, corresponding to 5% poste-
rior probability in each tail, is commonly presented in
PRA studies.

Actually, however, the interval presents only a
portion of the information in the posterior distribution,
two summary numbers. The full distribution is used
In a PRA.
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6.2.2.5.2 Noninformative Prior

The Jeffreys noninformative prior is intended to
convey little prior belief or information, thus allowing
the data to speak for themselves. This is useful when
no informed consensus exists about the true value of the
unknown parameter. It is also useful when the prior
distribution may be challenged by people with various
agendas. Some authors use the term reference prior
instead of "noninformative prior," suggesting that the
prior is a standard default, a prior that allows consis-
tency and comparability from one study to another.

Further arguments for the prior are too complicated to
give here. For a fuller explanation of noninformative
priors, see Appendix B.5.3.1 and the references cited
there.

Suppose that the data consist of x events in time t.
Formal application of the update formulas yields

ages, = x + V2
1,.s = t +0.

That is, the Bayes posterior distribution for A is
gamma(x + Vi, t).

With Poisson data, the Jeffreys noninformative prior is
obtained if the shape parameter of a gamma distribution
is taken to be a= Vz and the parameter flis taken to be
zero. (See, for example, Box and Tiao 1973.) Ignoring
the normalizing constant at the front of Equation 6.4
yields a function that is proportional to 2', shown in
Figure 6.14. Although this function is interpreted as a
density function, it is an improper distribution be-
cause its integral from 0 to - is infinite.

0 0.1 0.2 0.3 0.4 0.5
IL (1Mtme) GC90029212

Figure 6.14 Jeffreys noninformative prior distribution
for an event frequency.

It is not intuitive that this prior is "noninformative."
Simple intuition might expect a uniform distribution
instead. To better educate the intuition, suppose we had
some median prior value m; that is, the prior distribu-
tion of A satisfies Pr(A < m) = Pr(A > m). This can be
rewritten as

Pr(O < A < m) = Pr(m < A <).

The interval from 0 to m is shorter than the interval
from m to a. Therefore, the prior density should be
larger to the left of m than to the right. The density
shown in Figure 6.14 has this property. (We ignore the
fact that the density in Figure 6.14 is improper.)

It is interesting to compare the interval using the
Jeffreys prior with the corresponding confidence
interval. The 90% posterior credible interval is

Aos = 2j,(2x + 1)12t
A4-5 = 109 5 (2x + 1)/2t.

These may be compared with the 90% confidence
interval:

, = je0 5 (2x)12t
icon{, 0.95 = e2 .9 5(2X + 2)12t.

The confidence intervals differ from the Bayes credible
intervals only in the degrees of freedom, and there only
slightly. This is the primary sense in which the Jeffreys
prior is "noninformative." The lower and upper confi-
dence limits have degrees of freedom 2x and 2x + 2,
respectively. The two Bayesian limits each use the
average, 2x + 1. The confidence interval is wider than
the Jeffreys credible interval, a reflection of the conser-
vatism of confidence limits with discrete data. How-
ever the similarity between the confidence limits and
the Jeffreys limits shows that the result using the
Jeffreys prior will resemble the result using frequentist
methods, that is, using no prior information at all.

Consider again Example 6.1, with one event in 4.89
critical-years, and use the Jeffreys noninformative
prior. The resulting posterior distribution has

ap.= 1.5
P. = 4.89 critical-years .

The mean of this distribution is 1.5/4.89 = 0.31
events per critical-year. A 90% Bayes credible
interval can be obtained from a chi-squared table
without any need for interpolation, because the
degrees of freedom parameter is 3, an integer. The
5th and 95th percentiles of the chi-squared distribu-
tion are 0.352 and 7.815. Division by 2x4.89 yields
the percentiles of the posterior distribution, 0.036 and
0.80.
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This posterior distribution has a larger mean and
larger percentiles than the posterior distribution in
Section 6.2.2.5.1. The data set is the same, but the
different prior distribution results in a different poste-
rior distribution. The results will be compared in
Section 6.2.2.5.4.

6.2.2.5.3 Constrained Noninfornative Prior

This prior is a compromise between an informative
prior and the Jeffreys noninformative prior. The mean
of the constrained noninformative prior uses prior
belief, but the dispersion is defined to correspond to
little information. These priors are described by
Atwood (1996), and by references given there. Con-
strained noninformative priors have not been widely
used, but they are mentioned here for the sake of
completeness.

For Poisson data, the constrained noninformative prior
is a gamma distribution, with the mean given by prior
belief and the shape parameter = V2. That is:

a=
/4,,, satisfies aj, 1/4,,,O, = prior mean.

To illustrate the computations, consider again the
Example 6.1, with one event in 4.89 reactor-critical-
years. Suppose we knew that in the industry overall
such events occur with an average frequency of
0.144 events per reactor-critical-year. (This is
consistent with the informative prior given above in
Section 6.2.2.5.1.) Suppose further that we were
unable or unwilling to make any statement about the
dispersion around this mean - the full information
used to construct the informative prior was not

available, or the plant under consideration was
atypical in some way, so that a more diffuse prior
was appropriate.

The constrained noninformative prior with mean
0.144 has ap, = Y2 and Pp. = 3.47 critical-years.
The resulting posterior distribution has

ap, = X + Y2 = 1.5
4, = t + 3.47 = 8.36

The mean is 0.18 events per critical-year, and the
90% credible interval is (0.021, 0.47). This notation
means the interval from 0.021 to 0.47.

6.2.2.5.4 Example Comparisons Using Above
Priors

In general, the following statements can be made:

* The Jeffreys noninformative prior results in a
posterior credible interval that is numerically
similar to a confidence interval, but slightly
shorter.

* If the prior mean exists, the posterior mean is
between the prior mean and the MLE.

* If two prior distributions have the same mean, the
more concentrated (less diffuse) prior distribution
will yield the more concentrated posterior distribu-
tion, and will pull the posterior mean closer to the
prior mean.

These statements are now illustrated by example.
The estimates found in the above sections for
Example 6.2 and the various priors are compared in
Table 6.4 and in Figure 6.15.

Table 6.4 Comparison of estimates with I event In 4.89 reactor-criltcal-years.

Method Prior mean Posterior Point estimate 90/o interval (confidence
parameters (MLE or posted_ interval or posterior credi- |

or mean) ble interval)

Frequentist NA NA 0.20 (0.010, 0.97)

Bayes with Jeffreys undefined a = 1.5 0.31 (0.036,0.80)
noninformative prior, a= 4.89
gamma(0.5, 0)

Bayes with (informative) 0.144 a= 2.53 0.16 (0.038, 0.36)
industry prior, 6= 15.52
gamma(1.53,10.63)

Bayes with constrained 0.144 a= 1.5 0.18 (0.021, 0.47)
noninformative prior, /= 8.36
gamma(0.5, 3.47) .
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Figure 6.15 Comparison of four point estimates and
interval estimates for A

In Table 6.4 and in Figure 6.15, the Jeffreys prior and
the frequentist approach are listed next to each other
because they give numerically similar results. The
Jeffreys prior yields a posterior credible interval that
resembles the frequentist confidence interval. It is a
little shorter, but it is neither to the right nor to the
left. This agrees with the earlier discussion of the
Jeffreys prior.

In each Bayesian case, the posterior mean falls
between the prior mean (if defined) and the MLE,
0.20. The prior distribution has more influence when
the prior distribution is more tightly concentrated
around the mean. The concentration is measured by
the shape parameter apft, because 1/a equals the
relative variance (= variance/mean2). Therefore the
larger a, the smaller the relative variance. The
industry prior and the constrained noninformative
prior have the same mean, but the industry prior has
the larger a, that is, the smaller variance. As a
consequence, in both cases the posterior mean is
between the MLE, 0.204, and the prior mean, 0.144,
but the posterior mean based on the industry prior is
closer to 0.144, because that prior has a smaller
variance. Because the prior mean is smaller than the
MLE, the bottom two lines give smaller posterior
estimates than do the top two lines. Also, the prior
distribution with the most information (largest a)
yields the most concentrated posterior distribution,
and the shortest 90% interval.

In some situations, no conjugate prior is satisfactory.
For example, a gamma distribution is very unrealistic if
the shape parameter is very small. As a rule of thumb,
the lower percentiles of the distribution are unrealistic
if ais much smaller than 0.5. Such a posterior distribu-
tion arises with Poisson data when the prior distribution
is very skewed (avery small) and the data contain zero
events. Then, the posterior distribution also is very
skewed, and the posterior 5th percentile may be many
orders of magnitude below the posterior mean. The
subject-matter experts must look at the percentiles and
decide if they are believable. If not, a more appropriate

prior should be chosen. It will not be conjugate. This
is the subject of the next subsection.

6.2.2.6 Estimation with a Continuous
Nonconjugate Prior

Discrete priors and conjugate priors were updated
above with simple formulas. What remains are the
continuous nonconjugate priors. Any continuous
distribution defined on the allowed range of A can, in
principle, be used as a prior. The resulting posterior
distribution is a continuous distribution, with no simple
form. (Because the posterior distribution does not have
a simple analytical form, it cannot be entered directly as
an input to most PRA codes. Instead, a discrete ap-
proximation of the posterior distribution must usually
be used.)

Three approaches for obtaining the posterior are given
here. Some examples will be worked out in Section
6.2.2.7.

6.2.2.6.1 Direct Numerical Integration

If software is available for performing numerical
integration, the following approach can be used. Find
the form of the posterior distribution, using Equation
6.5. Suppose, for example, that the prior distribution
for A is lognormal, with pand d denoting the mean and
variance of the normal distribution of InI. As stated in
Appendix A.7.3, the lognormal density is proportional
to

1 In A-'.{2

fN(A)oc-e
A

Substitute this and Equation 6.1 into Equation 6.5, to
obtain the form of the posterior density:

IAt inA-,u) 2

Cfpos, (A) = e-A t e 2 a,

All terms that do not involve A have been absorbed into
the normalizing constant, C. The normalizing constant
can be evaluated by numerically integrating Cf., from
0 to o, that is, integrate the right hand side of the
equation. Unless x is unrealistically large, the function
does not need to be integrated in practice out beyond,
say, InA = p + So. C equals the integral of Cfpon
because the integral offpo, must equal 1. Once C has
been evaluated, the mean and percentiles offp, can be
found numerically.
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Numerical integration, using a technique such as the
trapezoidal rule or Simpson's rule, can be programmed
easily, even in a spreadsheet. The ideas are found in
some calculus texts, and in books on numerical methods
such as Press et al. (1992).

6.2.2.6.2 Simple Random Sampling

A second approach, which does not directly involve
numerical integration, is to generate a large random
sample from the posterior distribution, and use the
sample to approximate the properties of the distribution.
Some people think of this as numerical integration via
random sampling. Surprisingly, the random sample can
be generated without explicitly finding the form of the
posterior distribution, as explained by Smith and
Gelfand (1992).

The algorithm, called the rejection method for sam-
pling from a distribution, is given here in its general
form, and applied immediately to sampling from the
posterior distribution. In general, suppose that it is
possible to sample some parameter Ofrom a continuous
distribution g, but that sampling from a different
distribution f is desired. Suppose also that a positive
constant M can be found such thatj(&)/g( 0) s M for all
t The algorithm is:

(1) Generate 8fromg(8);
(2) Generate u from a uniform distribution, 0 s u s 1;

and
(3) If u Jf6)I[Mg(O) accept Oin the sample. Other-

wise discard it.

Repeat Steps (1) through (3) until enough values of 19
have been accepted to form a sample of the desired
size.

This algorithm is the basis for many random-number
generation routines in software packages. It is applied
below to the generation of a sample from the posterior
distribution for A. The equations are worked out here,
and the algorithm for the posterior distribution is
restated at the end.

Let f be the posterior density and let g be the prior
density. Then Equation 6.5 states that the ratio
J(A)Ig(A) is proportional to the likelihood, which is
maximized, by definition, when A equals the maximum
likelihood estimate, xlt. That is, the ratio of interest is:

JKA)tg(A) = Cek*(Aty

for some constant C. This is maximized when A equals
xt.i Therefore, define M = max[(AA)/g(A)J = Ceixr.
The condition in Step (3) above is equivalent to:

u s [Ce '(At)J / tCe x' ] = Ie~ II / te Y ] .

The constant cancels in the numerator and denominator,
so we do not need to evaluate it! It would have been
possible to work with m = MIC, and the calculations
would have been simpler. This rewritten form of the
algorithm, for Poisson data, is given here.

If x > 0, define m = e-Y. If x = O define m = 1.

The steps of the algorithm are:

(1) Generate a random A from the prior distribution;
(2) Generate u from a uniform distribution, 0 5 u s 1;

and
(3) If u • e-k(At)zm, accept A in the sample. Other-

wise discard A.

Repeat Steps (1) through (3) until a sample of the
desired size is found.

Intuitively, this algorithm generates possible values of
A from the prior distribution, and discards most of those
that are not very consistent with the data. The result is
a sample from the posterior distribution.

6.2.2.6.3 More Complicated Random Sampling

All-purpose Bayesian update programs can be used for
the present simple problem. For example, the program
BUGS' (Payesian inference Using Gibbs Sampling)
performs Markov chain Monte Carlo (MCMC)
sampling. This package is intended for complicated
settings, such as those described in Chapters 7 and 8.
Using it here is like using the proverbial cannon to kill
a mosquito. Nevertheless, the program is free, and very
flexible, and can be used here. It is available for
download at

http://www.mrc-bsu.cam.ac.uk/bugs/

and is described more fully in Sections 7.2.3 and
8.3.3.3 of this handbook. An example is given below.

X Mention of specific products and/or manufacturers in
this document implies neither endorsement or
preference, nor disapproval by the U.S. Government or
any of its agencies of the use of a specific product for
any purpose.
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6.2.2.7 Examples Involving Nonconjugate Priors

These techniques will be illustrated with Example 6.3,
from Appendix J-4 of Poloski et al. (1999a).

Example 6.3 Small-break LOCAs.

No small-break loss-of-coolant accidents
(SBLOCAs) have occurred in 2102 reactor-
calendar-years at U.S. nuclear power plants. The
WASH-1400 (NRC 1975) distribution for the
frequency of this event was lognormal with
median 1E-3 and error factor 10.

6.2.2.7.1 Example with Lognormal Prior

Poloski et al. (1 999a) use the WASH-1 400 distribu-
ton as a prior, and update it with the 2102 years of
data.

The resulting posterior distribution was sampled
100,000 times using the method described in Section
6.2.2.6.2 above, and the mean was found. Then, the
values were arranged in increasing order, and the
percentiles of the sample were found. This process
took less than 15 seconds in 1999 on a 166 MHz
computer. Based on the mean and percentiles of the
sample, the mean of the posterior distribution is
3.5E-4, and the 90% posterior credible interval is
(4.5E-5, 9.8E-4).

To illustrate the method of Section 6.2.2.6.3, the
distribution was also sampled using BUGS. Figure
6.16 shows the script used for running BUGS.

given in the script arise as follows. BUGS parame-
terizes the normal in terms of the mean and inverse
of the variance, for reasons explained in- Section
6.6.1.2.1. It parameterizes the lognormal distribution
using the parameters of the underlying normal. It is
shown below that a lognormal with median 1 E-3 and
error factor 10 corresponds to an underlying normnal
with mean -6.980 and standard deviation 1.3997.
Therefore, the inverse of the variance is 1/1.39972 =
0.5104.

The line beginning ulisr defines the data, 0 events is
2102 reactor years. BUGS also requires an initial
value for A, but generated it randomly.

When BUGS generated 100,000 samples, the mean,
5th percentile, and 95th percentile of A were 3.5E-4,
4.5E-5, and 9.8E-4, just as found above.

6.2.2.7.2 Example with "Moment-Matching"'
Conjugate Prior

Conjugate priors have appeal: Some people find
algebraic formulas tidier and more convenient than
brute-force computer calculations. Also, when a
PRA program requests a distribution foraparameter,
it is usually easier to enter a distributional form and
a couple of parameters than to enter a simulated
distribution.

Therefore, a nonconjugate prior is sometimes re-
placed by a conjugate prior having the same mean
and variance. This method is carried out here with
the above example.

Begin by finding the gamma prior with the same
moments as the above lognormal prior. As explained
in Appendix A.7.3, the median, error factor, and
moments of the lognormal distribution are related to
/and oaf the underlying normal distribution of InA

as follows:

median(A) = exp(p4
EF(A) = exp(1.645o)
mean(A) = exp(p + od12)
var(A) = [medlan(Af-exp(d)-[exp(d) - 11.

The lognormal prior has median 1.OE-3, and error
factor 10. Solving the first two equations yields

p= -6.907755
a= 1.399748.

Substituting these values into the second two equa-
tions yields

mean(A) = 2.6635E-3
var(A)=4.3235E-5 .

model

mu <- lambda*rxyrs
x - dpois(mu)
lambda - dlnorm(-6.908,0.5104)

I
list(rxyrs=2102, x=O)

Figure 6.16 Script for analyzing Example 6.3 using
BUGS.

The section in curly brackets defines the model.
Note that <-, intended to look like a left-pointing
arrow, is used to define quantities In terms of other
quantities, and - is used to generate a random
quantity from a distribution. The names of distribu-
tions begin with the letter d. Thus, X is a Poisson
random variable with mean A, with A= A x rxyrs. The
prior distribution of A is lognormal. The parameters

6-18



Parameter Estimation and Model Validation

Now the gamma distribution must be found with this
mean and this variance. The formulas for the mo-
ments of a gamma distribution were given in Section
6.2.2.4.1 and in Appendix A.7.6:

mean = a/m6
variance = ash .

Therefore,

a= mean2/variance = 0.164
Al= mean/variance = 61.6 reactor-years.

Warning flags should go up, because a is consider-
ably smaller than 0.5. Nevertheless, we carry out the
example using this gamma distribution as the prior.
The update formulas yield:

2z

*0.00 0.02 0.04 0.06
A (events/reactor-yr.) ecaOoS

Figure 6.17 Two prior distributions having the same
means and variances.

a,.,,= 0 + 0.164 = 0.164
f, = 2102 + 61.6 = 2164 reactor-years.

The posterior mean is 7.6E-5, and a 90% credible
interval is (3.4E-12, 4.1E-4), all with units events
per reactor-year.

612.73 Comparison of Example Analyses

The two posterior distributions do not agree closely,
as will be discussed below. If the shape parameter
a of the gamma prior had been larger, the two prior
distributions would have had more similar percen-
tiles, and the two posterior distributions likewise
would have agreed better. As it is, however, the two
analyses are summarized in Table 6.5.

Table 6.5 Posterior distributions from two
analyses.

- 0.7.
)A 0.6

0.5
0.04
0.3
0.2
0.1
0.0.

1.E-12 1.E-10 l.E-08 I.E-06 1E-04 I.E-02 1.E+O
.(evenslreactr-yr.) GC902926

Figure 6.18 The same prior distributions as in the
previous figure, with A plotted on a logarithmic scale.

The two resulting posterior distributions are also
quite different In the lower tail, as shown in Figure
6.19, and this difference is especially clear when the
distributions are plotted on a log scale, as shown in
Figure 6.20.Prior I Mean I 90% Intervall

Lognormal 3.5E-4 (4.5E-5, 9.8E-4)

Gamma 7.6E-5 j(3.4E-12, 4.1E-4

The most notable difference between the two poste-
rior distributions is in the lower endpoints, the 5th
percentiles, which differ by many orders of magni-
tude. This Is explained, to some extent, by graphical
comparisons. Figures 6.17 and 6.18 show the prior
cumulative distributions. When plotted on an ordi-
nary scale in Figure 6.17, the two prior distributions
look fairly similar, although the gamma distribution
seems to put more probability near zero. The differ-
ences become much more obvious when the two
prior distributions are plotted on a logarithmic scale
in Figure 6.18. These differences between the two
prior distributions are present in spite of the fact that
the two priors have equal means and equal vari-
ances.

a.

-0.000 0.001 0.002 0.003 O.004
A (events/reador-yr.) oMutM23

Figure 6.19 Two posterior distributions, from priors
in previous figures.
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LI

a.

1.0
0.9 - Lognormal
0.8 Gamma "I
0.7.
0.8
0.5
0.4
0.3
02 .
0.1 _ .- ,i.
n et

1.E-12 1.E-10 t.E-8 t.E-06 t.E-04 1.E-02 1.E+00
X. (eventseactor-yr.) GCU 0224

Figure 6.20 The same posterior distributions as in
the previous figure, with A plotted on logarithmic
scale.

Incidentally, these illustrations use cumulative distri-
butions instead of densities, for an important reason.
Cumulative distributions simply show probabilities,
and so can be plotted with the horizontal scale either
linear or logarithmic. Alternatively, the density of
In(A) could be plotted against In(A), but take care to
calculate the density of In(A) correctly, as explained
in Appendix A.4.7.

6.2.2.8 Analysis with Faxed Count and Random
Time

Sometimes it is useful to consider a fixed number of
events in a random time, a waiting time. For example,
if the event frequency is believed to change over time,
only the most recent history may represent current
behavior. In such a situation, one might decide to use
only the most recent few events, such as x = 3, and to
treat the corresponding time r as random. Here t is the
time measured backwards from the present to the xth
event in the past. Earlier events could be used to
construct a prior distribution, but the dispersion of the
prior distribution should be set large because the earlier
events are not considered fully relevant to the present.

The above data consist of x exponential(A) durations.
The analysis techniques are given in Section 6.6.1.2.2.
It turns out that Bayesian analysis with an informative
prior is exactly the same whether the data are regarded
as coming from a Poisson count x in fixed time t or a
sum t of x exponential durations. The two likelihoods
are proportional to each other, and the posterior distri-
butions are identical.

6.2.3 Model Validation

Model validation should go hand in hand with parame-
ter estimation. Philosophically, it would seem natural
first to confirm the form of the model, and second to
estimate the parameters of that model. However,
typically one can perform goodness-of-fit tests, and

other validations of a model, only after the model has
been fully specified, that is, only after the form of the
model has been assumed and the corresponding param-
eters have been estimated. Because parameter-estima-
tion is built into most model-validation procedures, it
was presented first.

It is usually wise not to stop the analysis with just
estimating the parameters. Foolish results have been
presented by analysts who estimated the parameters but
did not thoroughly check that the assumptions of the
model were correct. This section presents ways to
check the model assumptions.

That being said, there is more in this section than will
be needed on any one analysis. Often, a simple plot is
sufficient to show that the model appears adequate.
When the data are very sparse, perhaps not even that is
needed, because the data set is too small to invalidate
any model; in such a case, the simplest model is nor-
mally accepted. The methods here are offered for
possible use, and the analyst should select the appro-
priate ones.

The Poisson process was introduced in Section 2.2.2.
The three assumptions were listed there: constant event
occurrence rate, no simultaneous events, and indepen-
dent time periods. These assumptions are considered
here. Much of the following material is taken from an
INEEL report by Engelhardt (1994).

The assumption of constant rate is considered in the
next two sections, first, where the alternative possibility
is that different data sources may have different values
of A, but in no particular order, and then, where the
alternative possibility is that a time trend exists. Both
graphical methods and formal statistical hypothesis tests
are given for addressing the issues. The assumption of
no exactly simultaneous events is then discussed from
the viewpoint of examining the data for common-cause
events. Finally, the assumption of independent time
intervals is considered, and some statistical tests of the
assumption are given.

When Bayesian methods are used, one must also
examine whether the data and the prior distribution are
consistent. It makes little sense to update a prior with
data, if the data make it clear that the prior belief was
incorrect. That topic constitutes the final subsection of
the present section.

623.1 Poolability of Data Subsets

Assumption I in Section 2.2.2 implies that there is one
rate A for the entire process. The correctness of such an
assumption can be investigated by analyzing subsets of
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the data and comparing the estimates of A for the
various subsets.

Example 2.2 described LOSP events during shutdown.
For this section, consider a portion of that example.
The entire data set could be used, but to keep the
example from being too cumbersome we arbitrarily
restrict it to five plants at three sites, all located in one
state.

An obvious question concerns the possibility of differ-
ent rates for different plants. A general term used in
this handbook will be data subsets. In Example 6A,
five subsets are shown, corresponding to plants. In
other examples, the subsets could correspond to years,
or systems, or any other way of splitting the data. For
initiating events, each subset corresponds to one cell in
the table, with an event count and an exposure time.

First, a graphical technique is given to help the analyst
understand what the data set shows. Then, a formal
statistical procedure is presented to help quantify the
strength of the evidence for patterns seen in the graphi-
cal investigation.

6.2.3.1.1 Graphical Technique

To explore the relations between cells, identify the cells
on one axis. Then, for each cell, plot a point estimate
of A and an interval estimate of A against the other axis.
Patterns such as trends, outliers, or large scatter are then
made visible.

In Example 6.4, the cells are plants. The data set
from each plant was analyzed separately, using the
tools of Section 6.2.1. The graph in Figure 6.21
shows the maximum likelihood estimate and a
confidence interval for each plant, plotted side by
side. For this handbook, the plot was produced with
a graphics software package, although a hand-drawn
sketch would be adequate to show the results.Example 6.4 Shutdown LOSP events at five

plants, 1980-96.

During 1980-1996, five plants experienced eight
LOSP events while in shutdown. These were
events from plant-centered causes rather than
external causes. The data are given here.

Pooled (8/22.5)

(CRq MA 91

Plant Events Plant shutdown
code years

CR3 5 5.224

SLI 0 3.871

SL2 0 2.064

TP3 2 5.763

| TP4 1 5.586

| Totals 8 22.508

TP3 (2/5.8) *- +.- - _

TP4 (115.6)
SL2 (0/2.1)
SLl (0/3.9)

0.0 0.5 1.0 1.5 2.0 2.5
I (eventstreactor-shutclvwt-vr.) amme

Figure 6.21 MLEs and 90% confidence intervals for
A, based on each plant's data and based on pooled
data from all the plants.

Sometimes, data subsets can be split or combined in
reasonable ways. For example, if the subsets were time
periods, the data could be partitioned into decades,
years, or months. The finer the division of the cells, the
more sparse the data become within the cells. Too fine
a partition allows random variation to dominate within
each cell, but too coarse a partition may hide variation
that is present within individual cells. In the present
simple example, the most reasonable partition is into
plants. Analysis of more complicated data sets may
require examination of many partitionings.

The confidence interval for the pooled data is also
shown. Take care, however: this interval is only
valid if all the plants have the same A, which is what
must be decided. Nevertheless, the interval and
point estimate for the pooled data give a useful
reference for comparisons with the individual plants.
For this reason, a vertical dotted line is drawn
through the mean of the pooled data.

Note that the plants are not displayed in alphabetical
order, which is a meaningless order for the event

rate, but In order of decreasing A . (When two plants
have the same MLE, as do SLI and SL2, the upper
confidence limit is used to determine the order.)
Experience has shown that such a descending order
assists the eye in making comparisons.

CR3 appears somewhat high compared to the
others. Although there is considerable overlap of the
intervals, the lower confidence limit for CR3 is just
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barely higher than the MLE for the utility as a whole.
Of course, the picture might give a different impres-
sion if slightly different intervals were used: 95%
confidence intervals instead of 90% confidence
intervals, or Bayes intervals with the Jeffreys
noninformative prior instead of confidence intervals.
From the graph alone, it is difficult to say whether the
data can be pooled.

In the present application, the data subsets are the five
plants. The method is to see what kind of data would
be expected when A really is constant, and then to see
how much the observed counts differ from the expected
counts. If the difference is small, the counts are consis-
tent with the hypothesis Ho that the rate is constant. If,
instead, the difference is large, the counts show strong
evidence against Ho.

A graph like this should not be used to draw conclu-
sions without also using a formal statistical test. For
example, if many confidence intervals are plotted,
based on data sets generated by the same A, a few will
be far from the others because of randomness alone.
This was seen in Figure 6.4, where all the variation was
due to randomness df the data, and some intervals did
not overlap some others at all. Thus, an outlying
interval does not prove that the As are unequal. This
same statement is true if other intervals are used, such
as Bayes credible intervals based on the noninformative
prior. The issue is the random variability of data, not
the kind of interval constructed.

Conversely, if there are only a few intervals, intervals
that just barely overlap can give strong evidence for a
difference in the As.

To quantify the strength of the evidence against poola-
bility, a formal statistical procedure is given in the next
subsection. The graph gives an indication of what the
test might show, and helps in the interpretation of the
test results. If the statistical test turns out to find a
statistically significant difference between plants, it is
natural then to ask what kind of difference is present.
Figure 6.21 shows that most of the plants appear
similar, with only one possible outlier. An unusually
long interval, such as that seen in Figure 6.21 for SL2,
is generally associated with a smaller exposure time.
The picture provides insight even though it does not
give a quantitative statistical test.

6.2.3.1.2 Statistical Test

The Chi-Squared Test. To study whether the rate is
the same for different cells, use a chl-squared test.
Many statistics texts, such as Bain and Engelhardt
(1992, Chapter 13), discuss this test, and many software
packages perform the chi-squared test. It is presented
here in enough detail so that the reader could perform
the calculations by hand if necessary, because it is
instructive to see how the test works.

Let the null hypothesis be:

HO: A is the same in all the data subsets.

Write x, and t, for the count and exposure time corre-
sponding to the jth cell, and let x = Ex, and t = Zty. If
Ho is true, that is, if A is really the same for all the

plants, then the estimate (MLE) of A is A = xlt. The
estimate of the expected count is built from this quan-
tity. Assuming the hypothesis of a single rate A, an
estimate of the expected count for thejth cell is simply:

e, = Ate.

In Example 6.4, the estimate of A is 8/22.508 = 0.355
events per shutdown-year. Therefore, the expected
count for CR3 is the estimate of A times the exposure
time for CR3, 0.335 x 5.224 = 1.857 events. Table
6.6 is an extension of the original table given in
Example 6.4, showing the quantities needed for the
calculation.

Table 6.8 Quantities for calculation of
chl-squared test

Cell code xi I el

CR3 5 5.224 1.857

SLI 0 3.871 1.376

SL2 0 2.064 0.734

TP3 2 5.763 2.048

TP4 1 5.586 1.985

Totals 8 22.508 8.000

The total of the expected counts agrees with the total
of the observed counts, except possibly for small
round-off error.

The test for equality of rates that is considered here is
based on the following calculated quantity,

X2 = - e)2 1e1.
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sometimes called the Pearson chi-squared statistic,
after its inventor, Karl Pearson, or simply the chi-
squared statistic. The notation became standard long
before the custom developed of using upper-case letters
for random variables and lower-case letters for num-
bers. In the discussion below, the context must reveal
whether x2 refers to the random variable or the ob-
served value.

Observe that x2 is large if the xs (observed counts)
differ greatly from the ens (expected values when Ho is
true). Conversely, X2 is small if the observed values are
close to the expected values. This statement is made
more precise as follows. When Ho is true and the total
count is large, the distribution of x2 has a distribution
that is approximately chi-squared with c - I degrees of
freedom, where c is the number of cells. If the calcu-
lated value of x2 is large compared to the chi-squared
distribution, there is strong evidence that H. is false; the
larger the x2 value, the stronger the evidence.

For the data of Table 6.4, V( = 7.92, which is the
90.6th percentile of the chi-squared distribution with
four degrees of freedom. The next subsection
discusses the interpretation of this.

Interpretation of Test Results. Suppose, for any
example with 5 cells, that X2 were 9.8. A table of the
chi-squared distribution shows that 9.488 is the 95th
percentile of the chi-squared distribution with 4 degrees
of freedom, and 11.14 is the 97.5th percentile. After
comparing x2 to these values, we would conclude that
the evidence is strong against H., but not overwhelm-
ing. The full statement is:

* If Ho is true, that is, if all the cells have the same 'l,
the chance of seeing such a large x2 is less than
0.05 but more than 0.025.

Common abbreviated ways of saying this are:

* We reject Ho at the 5% significance level, but not
at the 2.5% significance level.

* The difference between cells is statistically signif-
icant at the 0.05 level, but not at the 0.025 level.

* The p-value is between 0.05 and 0.025.

There will be some false alarms. Even if A is exactly
the same for all the cells, sometimes X2 will be large,
just from randomness. It will be greater than the 95th
percentile for 5% of the data sets, and it will be greater
than the 99th percentile for 1% of the data sets. If we
observed such a value for X2, we would probably decide
that the data could not be pooled. In that case, we
would have believed a false alarm and made the incor-
rect decision. Just as with confidence intervals, we

cannot be sure that this data set is not one of the rare
unlucky ones. But following the averages leads us to
the correct decision most of the time.

If, instead, X2 were 4.1, it would be near the 60th
percentile of the chi-squared distribution, and therefore
be in the range of values that would be expected under
H.. We would say the observed counts are consistent
with the hypothesis H., or Ho cannot be rejected, or the
evidence against H, is weak. We would not conclude
that H0 is true, because it probably is not exactly true to
the tenth decimal place, but the conclusion would be
that H. cannot be rejected by the data.

In fact, for the data of Table 6.6, x2 equals 7.92,
which is the 90.6th percentile of the chi-squared
distribution with 4 degrees of freedom. That means:
if all five plants have the same event rate, there is a
9.4% probability of seeing such a large value of XV.
The evidence against H. is not convincingly strong.
CR3 might be suspected of having a higher event
rate, but the evidence is not strong enough to prove
this.

The traditional cut-off is 5%. The difference between
cells is called statistically significant, with no qualify-
ing phrase, if it is significant at the 0.05 level. This is
tradition only, but it is very widely followed.

In actual data analysis, do not stop with the decision
that a difference is, or is not, statistically significant.
Do not even stop after reporting the p-value. That may
be acceptable if the p-value is very small (much less
than 0.05) or very large (much larger than 0.05). In
many cases, however, statistical significance is far from
the whole story. Engineering significance is just as
important.

To illustrate this, consider a possible follow-up to the
above statistical analysis of Example 6A. As men-
tioned, the statistical evidence against poolability is not
strong, but some might consider it borderline. There-
fore, a thorough analysis would ask questions such as:

Are there engineering reasons for expecting CR3
to have a different event rate than the other plants
do, either because of the hardware or because of
procedures during shutdown? (Be warned that it
is easy to find justifications in hindsight, after
seeing the data. It might be wise to hide the data
and ask these questions of a different knowledge-
able person.)

* What are the consequences for the PRA analysis
if the data are pooled or if, instead, CR3 is treated
separately from the other plants? Does the deci-
sion to pool or not make any practical difference?
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Required Sample Size. The above considerations are
valid if the total count is 'large," or more precisely, if
the ejs are "large." If the eys are small, the chi-squared
distribution is not a good approximation to the distribu-
tion of X2. Thus, the user must ask how large a count is
necessary for the chi-squared approximation to be
adequate. An overly conservative rule is that each
expected cell-count, et should be 5.0 or larger. Despite
its conservatism, this rule is still widely used, and cited
in the statistical literature and by some software pack-
ages.

A readable discussion of chi-squared tests by Moore
(1986, p.7 1) is applicable here. Citing the work of
Roscoc and Byars (1971), the following recommenda-
tions are made:

(1) With equiprobable cells, the average expected
frequency should be at least I when testing at the
0.05 level. In other words. use the chi-squared
approximation at the 5% level when x/c 2 1,
where x is the number of events and c is the
number of cells. At the 1% level, the chi-squared
approximation is recommended if xlc 2 2.

(2) When the cells are not approximately equiproba-
ble, the average expected frequencies in (I)
should be doubled. Thus, the recommendation is
that at the 5% level xic 2 2, and at the 1% level
X/c 2 4.

Note that in rules (1) and (2) above, the recommen-
dation is based on the average rather than the minimum
expected cell-count. As noted by Koehler and Larntz
(1980), any rule such as (2) may be defeated by a
sufficiently skewed assignment of cell probabilities.

Roscoe and Byars also recommend when c = 2 that the
chi-squared test should be replaced by the test based on
the exact binomial distribution of X, conditional on the
total event count. For example, if the two cells had the
same exposure times, we would expect that half of the
events would be generated in each cell. More gener-
ally, if

time. Nevertheless, the expected cell counts differ from
each other by, at most, a factor of two. This is not a
large departure from equiprobability, as differences of
an order of magnitude would be. Because xic = 1.6,
and the calculated significance level is about 10%, the
sample size is large enough for the chi-squared approxi-
mation to be adequate. The conclusions reached earlier
still stand. If, on the other hand, the sample size had
been considerably smaller, one would have to say that
the p-value is approximately given by the chi-squared
distribution, but that the exact p-value has not been
found.

If the expected cell-counts are so small that the chi-
squared approximation is not recommended, the analyst
can pool data in some "adjacent cells," thereby increas-
ing the expected cell-counts.

In the Example 6.4, suppose that there were engineering
reasons for thinking that the event rate is similar at units
at a single site. Then, the sister units might be pooled,
transforming the original table of Example 6.4 into
Table 6.7 here.

Table &7 Shutdown LOSP events at three
sites, 1980-96.

Site code I Events I Plant shutdownyears

CR 5 5.224

SI 0 5.935

TP 3 11.349

0

0

S

the two cells have exposure times t, and t2,

a total of x events are observed, and
A is the same for both cells,

We repeat, this pooling of cells is not required with the
actual data, but it could be useful if (a) the cell counts
were smaller and (b) there were engineering reasons for
believing that the pooled cells are relatively homoge-
neous, that is, the event rates are similar for both units
at a site, more similar than the event rates at different
sites.

Generally speaking, a chi-squared test based on a larger
number of cells will have better power for detecting
when rates are not equal, but this also makes it more
difficult to satisfy guidelines on expected cell-counts
for the chi-squared approximation. Thus, it is some-
times necessary to make a compromise between ex-
pected cell counts and the number of cells.

Options involving the exact distribution of X2 are also
possible. The most widely known commercial software
for calculating the exact p-value is StatXact (1999).

then, conditional on x, XI has a binomial(n, p) distribu-
tion, with p = til(t1 + t2 ). Exact binomial tests are
discussed by Bain and Engelhardt (1992, p.405).

Example 6.4 has x = 8 and c = 5. The cells are not
equiprobable, that is, ec is not the same for all cells,
because the plants did not all have the same exposure
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6.2.3.2 No rime Trend

The chi-squared method given above does not use any
ordering of the cells. Even if the test were for differ-
ences in years, say, the test would not use the natural
ordering by calendar year or by plant age. When there
is a meaningful order to the data subsets, it may be
useful to perform additional analyses. The analysis
given above is valid, but an additional possible analysis,
making use of time order, is considered now.

The methods will be illustrated with Example 6.5.

6.2.3.2.1 Graphical Techniques

Confidence-Interval Plot. First, the same kind of plot
that was used in the previous subsection can be used
here. The time axis is divided into cells, orbins in the
terminology of some authors. For example, if the time
span is divided into calendar years, the counts and
reactor-critical-years for Example 6.5 are given in
Table 6.8.

Example 6.5 Unplanned HPCI demands.

Grant et al. (1995, Table B-5) list 63 unplanned
demands for the HPCI system to start at 23 BWRs
during 1987-1993. The demand dates are given
in columns below, in format MMIDDIYY.
01/05/87 08/03/87 03/05/89 08/16/90 08/25/91
01/07/87 08/16/87 03/25/89 05/19/90 09/11/91
01/26/87 08/29/87 08126/89 09/02190 12/17/91
02/18t87 01/10/88 09/03/89 09/27/90 02102192
02124/87 04/30/88 11/05/89 10/12/90 06/25/92
03111/87 05/27/88 11/25/89 10/17/90 08/27/92
04/03/87 08105/88 12120/89 11/26/90 09130/92
04/1687 08/25/88 01/12190 01/18/91 10/15/92
04/22/87 05/26/88 01/28/90 01125/91 11/18/92
07/2387 09/04/88 03119/90 02/27/91 04/20193
07/26/87 11/01/88 03/19/90 04/23/91 07/30/93
07/30/87 11/16/88 06/20/90 07/18/91
08/o387 12/17/88 07/27/90 07/31/91

This table has the same form as in Example 6.4,
showing cells with events and exposure times. The
relevant exposure time is reactor-critical-years,
because the HPCI system uses a turbine-driven
pump, which can only be demanded when the
reactor is producing steam. The counts come from
the tabulated events of Example 6.5, and the critical-
years can be constructed from information in Poloski
et al. (1999a). The variation in critical-years results
from the facts that several reactors were shut down
for extended periods, and one reactor did not receive
its low power license until 1989.

This leads to a plot similar to Figure 6.21, showing
the estimated value of the demand frequency, A, and
a confidence interval for each year. This is shown in
Figure 6.22.

*- 2.0
e $ MLE and 90% conf. hterval

1.0

0.5 1 1

LU 0.0

87 88 89 90 91 92 93
Year GC89N 92 1

Figure 6.22 MLEs and 90% confidence intervals
for A, each based on data from one calendar year.

Figure 6.22 seems to indicate a decreasing trend in the
frequency of HPCI demands. However, the picture
does not reveal whether the apparent trend is perhaps
merely the result of random scatter. To answer that
question, a formal statistical test is necessary, quantify-
ing the strength of the evidence. Such tests will be
given in Section 6.2.3.2.2.

Cumulative Plot. Figure 6.22 required a choice of
how to divide the time axis into cells. A different plot,
given next, does not require any such choice, if the
dates of the events are recorded. Plot the cumulative
event count at the n event dates.

Figure 6.23 shows this for Example 6.5. The events
are arranged in chronological order, and the cumula-
tive count of events Is plotted against the event
times.

The slope of a string of plotted points is defined as the
vertical change in the string divided by the horizontal
change, Ay/Ax. This is the familiar definition of slope
from mathematics courses. In the plot given here, the
horizontal distance between two points is elapsed time,

Table 6.8 HPCI demands and reactor-critical-
years.

Calendar HPCI Reactor-critical-
year demands years

1987 16 14.63
1988 10 14.15
1989 7 15.75

1990 13 17.77
1991 9 17.11
1992 6 17.19
1993 2 17.34
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and the vertical distance is the total number of events
that occurred during that time period. Therefore,

slope = (number of events)/(elapsed time),

so the slope is a graphical estimator of the event fre-
quency, A. A constant slope, or a straight line, indicates
a constant A. Changes in slope indicate changes in A:
if the slope becomes steeper, A is increasing, and if the
slope becomes less steep, A is decreasing.

64

56 (

_ 48

E 4

24O

Figure 6.23 shows more detail, with the individual
events plotted, but it is less accurate in this example
because we have not gone through the work of
plotting events versus reactor-critical time.

It is important that the horizontal axis cover the entire
data-collection period and not stop at the final event. In
Figure 6.23, the lack of events during the last half of
1993 contributes to, the overall curvature of the plot.

If the frequency is constant, the plot should follow a
roughly straight line. For comparison, it is useful to
show a straight diagonal line, going from height O at the
start of the data collection period to height n + I at the
end of the data collection period, where n is the number
of data points.

In Figure 6.23, the diagonal line is shown as a dotted
line, rising from height 0 on the left to height n + 1 =
64 on the right.

As mentioned above, the early calendar years
contain fewer reactor-critical-years than do the later
calendar years. Therefore, the time axis in Figure
6.23 would reflect reactor-critical-years more accu-
rately if the left end of the axis were compressed
slightly or the right end were stretched slightly. The
effect would be to increase the curvature of the plot,
making it rise more quickly on the left and more
slowly on the right.

A cumulative plot contains random bounces and clus-
ters, so it is not clear whether the observed pattern is
more than the result of randomness. As always, a
formal statistical test will be needed to measure the
strength of the evidence against the hypothesis of
constant event frequency.

6.2.3.2.2 StatIstical Tests for a Trend in A

The Chi-Squared Test This is the same test as given
in Section 6.2.3.1.2, only now the cells are years or
similar divisions of time.

In Example 6.5, the p-value is 0.009, meaning that a
random data set with constant A would show this
much variability with probability only 0.9%. Two
points are worth noting.

The chi-squared test makes no use of the order
of the cells. It would give exactly the same
conclusion if the intervals in Figure 6.22 were
scrambled in a random order instead of gener-
ally decreasing from left to right

1/1W87 1/1189 1/1191 1/1/93
Date oCUO2U

Figure 6.23 Cumulative number of HPCI demands,
by date.

In Example 6.5 the time axis represents calendar
years. Because the relevant frequency Is events per
reactor-critical-year, it would be better to plot the time
axis in terms of total reactor-critical-years from the
start of 1987. However, it is somewhat difficult to
calculate the reactor-critical-years preceding any
particular event, or equivalently, the reactor-critical-
years between successive events. Therefore, simple
calendar years are used. This is adequate if the
number of reactors operating at any time is fairly
constant, because then the rate per reactor-critical-
year remains roughly proportional to the rate per
industry-calendar year. In the present case, as
shown by Table 6.8, later calendar-years correspond
to more critical-years than do early calendar- years.

The slope in Figure 6.23 is steepest on the left, and
gradually lessens, so that the plot is rising fastest on
the left and more gently on the right. More HPCI
demands are packed into a time interval on the left
than into a time interval of the same length on the
right. This Indicates that the frequency of unplanned
HPCI demands was decreasing during the time
period of the study. Thus, this figure leads to the
same general conclusion as does Figure 6.22.
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* The calculated p-value is accurate enough to
use, by the guidelines of Section 62.3.1.2,
because the number of events is 63, and the
number of cells is 7, so xlc = 6317 = 9. Even
splitting the cells into six-month periods or smal-
ler periods would be justified.

Chapter 7 will take Figure 6.22, fit a trend, and perform
an additional test based on the fit; see Sections 7.2.3
and 7.2.4. Therefore, the chi-squared test is not dis-
cussed further here.

The Laplace Test This test does not use the binning
of times into cells, but instead uses the exact dates. In
the example, there are 63 occurrences of events during
a seven-year period. In general, consider a time interval
[0, LI, and suppose that during this period n events
occur at successive random times T,, T2, ... , T.,. Al-
though the number of occurrences, n, is random when
the plants are observed for a fixed length of time L, we
condition on the value of n, and so treat it as fixed.
Consider the null hypothesis:

Ho: A is constant over time.

Consider the alternative hypothesis:

H,: A is either an increasing or a decreasing function of
time.

This hypothesis says that the events tend to occur more
at one end of the interval than at the other. A test that
is often used is based on the mean of the failure times,
T = . iTj / n . The intuitive basis for the test is the
following. If A is constant, about half of the events
should occur before time 112 and half afterwards, and
the average event time should be close to L12. On the
other hand, if A is decreasing, more events are expected
early and fewer later, so the average event time should
be smaller than L12. Similarly, if A is increasing, the
average event time is expected to be larger than 1J2.
Therefore, the test rejects Ho if F is far from U2.
Positive values of the difference T - U2 indicate an
increasing trend, and negative values indicate adecreas-
ing trend.

When Ho is true, T has expected value I2 and variance
L01(12n). The resulting test statistic is

T- L/2
L / 2

The statistic U is approximately standard normal for n
2 3. A test of Ho at significance level 0.05 versus an
increasing alternative,

HI: A is increasing in time,

would reject H. if U a 1.645. A 0.05 level test versus
a decreasing alternative,

HI: A is decreasing in time,

would reject Ho if U s -1.645. Of course, ±1.645 are
the 95th and 5th percentiles, respectively, of the stan-
dard normal distribution. A two-sided test, that is, a test
against the original two-sided alternative hypothesis, at
the 0.10 Ilevel would reject Ho if Jlt t 1.645.

This test, generally known as the "Laplace" test, is
discussed by Cox and Lewis (1978, p. 47). The La-
place test is known to be good for detecting a wide
variety of monotonic trends, and consequently it is
recommended as a general tool for testing against such
alternatives.

Let us apply the Laplace test to the HPCI-demand
data of Example 6.5. First, the dates must be con-
verted to times. The first event time is 0.011 years
after January 1, 1987, the final event is 6.581 years
after the starling date, and the other times are
calculated similarly. Here, a Nyear is interpreted as
a 365-day year. The total number of 365-day years
is L = 7.00. The mean of the event-times can be
calculated to be 2.73. Therefore, the calculated
value of U is

2.73 -a3s
2700 Z 63 = -3.02

This is statistically very significant The value 3.02 is
the 0.lth percentile of the standard normal distribu-
tion. Thus, the evidence is very strong against a
constant demand rate, in favor instead of a decreas-
ing demand rate. Even against the two-sided hy-
pothesis

HI: A is increasing or decreasing in time,

the p-value is Pr( ILi > 3.02) = 0.002.

In the example, the Laplace test statistic was calcu-
lated in terms of calendar time instead of reactor-
crifical-time. As remarked earlier, using reactor-
critical-time would increase the curvature of the plot
in Figure 6.23. A similar argument shows that using
reactor-critical-time in computing U would increase
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the strength of the evidence against the hypothesis
of a constant demand rate. However, the computa-
tions would be very tedious. That is an advantage of
the chi-squared test, because it is typically easier to
find the exact relevant exposure time for blocks of
time, such as years, than for each individual event.

In the example, the result of the Laplace test agrees
with the result from the chi-squared test, but is more
conclusive. The chi-squared test gave a p-value of
0.009, meaning that if Ho is true, the cells would
appear so different from each other with probability
only 0.009. The Laplace test gives a p-value of
0.002.

The chi-squared and Laplace tests differ because they
are concerned with different alternatives to Ho. The
chi-squared test is concerned with any variation from
cell to cell (from year to year in the example). If the
event rate goes up and down erratically, that is just as
much evidence against Ho as if the event rate decreases
monotonically. The Laplace test, on the other hand, is
focused on the alternativeofa trend. It has more power
for detecting trends, but no power at all for detecting
erratic changes upward and downward.

Other tests exist in this setting. See Ascher and Fein-
gold (1984, page 80) and Engelhardt (1994, p. 19) for
details.

6.2.3.3 No Multiple Failures

The second assumption of the Poisson process is that
there are no exactly simultaneous failures. In practice
this means that common-cause failures do not occur. In
most situations, common-cause failures will occur from
time to time. This was seen in some of the examples
discussed in Section 2.2. However, if common-cause
events are relatively infrequent, their effect on the
validity of the Poisson model can normally be ignored.

No statistical methods are given here to examine
whether common-cause events can occur. Instead, the
analyst should think of the engineering reasons why
common-cause events might be rare or frequent, and the
data should be examined to discover how frequent
common-cause events are in practice.

In Example 6.5, HPCI demands, it is reasonable that
common-cause events could occur only at multiple
units at a single site. There was one such pair of
events in the data, with HPCI demands at Hatch 1
and Hatch 2, both on 08/03/87. Examination of the
LERs reveals that the demands occurred from
different causes. They happened at different times,
and so were not exactly simultaneous. The conclu-

sion is that common causes may induce exactly
simultaneous events, but they are infrequent.

If common-cause events are relatively frequent, so that
they cannot be ignored, it might be necessary to per-
form two analyses, one of the "independent", or not-
common-cause, events, and one of the common-cause
occurrences. The frequency of independent events
could be estimated using the methods given here. The
common cause events would have to be analyzed by
other methods, such as methods described in the
references given in Section 1.3.

6.23.4 Independence of Disjoint Time Periods

This section is less important than the others, and of
interest only to truly dedicated readers. Others should
skip directly to Section 6.2.3.5.

The final assumption of the Poisson model is that event
occurrences in disjoint time periods are statistically
independent. This should first be addressed by careful
thinking, similar to that in the examples of Section 2.2.
However, the following statistical approach may also be
useful.

One possible type of dependence would be if events
tend to cluster in time: large between-event times tend
to occur in succession, or similarly small ones tend to
occur in succession. For example, suppose that a repair
is done incorrectly several times in succession, leading
to small times between failures. The occurrence of a
failure on one day would increase the probability of a
failure in the next short time period, violating the
Poisson assumption. After the problem is diagnosed,
the personnel receive training in proper repair proce-
dures, thereafter resulting in larger times between
failures.

To illustrate the ideas, an example with no trend is
needed. The shutdown LOSP events introduced in
Section 2.2 can be used as such an example. The
data are restricted here to the years 1991-1996,
primarily to reduce any effect of the overall down-
ward trend in total shutdown tome. Atwood et al.
(1998) report 24 plant-centered LOSP events during
shutdown in 1991-1996. They are given as Exam-
pIe 6.6.

The null hypothesis is that the successive times between
events are independent and exponentially distributed.
We consider the alternative hypotheses that

* the times are not exponentially distributed, possi-
bly with more short times between events than
expected from an exponential distribution; or

i
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* successive times are correlated, that is that short
times tend to be followed by short times and long
times by long times.

6 days, which is assigned rank 3, and so forth. The
17th and 18th times are each 101 days, so those two
are each assigned rank 17.5. Selected values of x,
y and their ranks are shown in Table 6.9. For com-
pactness, not all of the values are printed.

Table 6.9 Calculations for analyzing LOSP
dates.

Example 6.6 Dates of shutdown LOSP
events and days between
them.

The consecutive dates of shutdown LOSP
events are shown in columns below. After each
date is the time since the preceding event, in
days. For the first event, the time since the
start of the study period is shown. Also, the
time is shown from the last event to the end of
the study period, a 25th between-event time."

03/07/91 66 04/02/92 10 09/27/94 129
03/13/91 6 04/06/92 4 11/18/94 52
03/20/91 7 04/28/92 22 02/27/95 101
04/02/91 13 04/08/93 345 10/21/95 236
06/22/91 81 05/19/93 41 01/20/96 91
07/24/91 32 06/22/93 34 05/23196 124
10/20/91 88 06/26/93 4 - 223
01/29/92 101 10/12/93 108
03/23/92 54 05/21/94 221

x_ _ rank(x) I| y| rank|y)

- 66 13
66 13 6 3
6 3 7 4
7 4 13 6

13 6 81 14
81 14 32 8
32 8 88 15
88 15 101 17.5

101 17.5 54 12
54 12 10 5

52 11 101 17.5
101 17.5 236 24
236 24 91 16

91 16 124 20
124 20 223 23
223 23 -

Section 6.6.2.3 discusses ways to investigate whether
data come from a particular distribution. Therefore, the
issue of the exponential distribution is deferred to that
section. The issue of serial correlation motivates the
following procedure. Let yi be the ith time between
events, and let x; be the (i- I) time between events, x, =
y- 1. We look to see if x, and y, are correlated.

In the above example, the first few (x, .0 pairs are
(66, 6), (6, 7), and (7, 13), and the final pair is (124,
223).

Figure 6.24 shows a scatter plot of rank(x) versus
rankly). The plot seems to show very little pattem,
indicating little or no correlation from one time to the
next. The barely perceptible trend from lower left to
upper right ("southwest to northeast") is probably not
meaningful, but a hypothesis test will need to be
performed to confirm or refute that judgment

2a

6.2.3.4.1 Graphical Method
a

As just mentioned, the issue of whether the distribution
is exponential is deferred to Section 6.6.2.3. Consider
here the question of serial correlation. A scatter plot of
x versus y will indicate whether the values are corre-
lated. However, with skewed data the large values tend
to be visually dominant, distorting the overall message
of the plot. One could try an ad hoc transformation,
such as the logarithmic transformation, but a more
universally applicable approach is to use the ranks of
the variables. That is, sort the n times in increasing
order, and assign rank I to the smallest time and rank n
to the largest time.

In the example, the two shortest times are each
equal to 4 days. Each is assigned the average of
ranks 1 and 2, namely 1.5. The next largest time is
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Figure 6.24 Scatter plot of rank(x) versus rank(y).

6-29



Parameter Estimation and Model Validation F
Parameter Estimation and Model Validation

6.2.3.4.2 Statistical Tests where

This section considers whether the between-event times
are serially correlated. The question of whether they
are exponentially distributed is discussed in Section
6.6.2.3, under the topic of goodness-of-fit tests.

Pr(X 2 ~xA = E e -t(,t)' I kk!
k-x

x-1I

= 1- E e-At (At) k/k!
I=o

(6.7)

To test for correlation, it is not appropriate to assume
normality of the data. Instead, a nonparametric test
should be used, that is, a test that does not assume any
particular distributional form. A test statistic that is
commonly produced by statistical software is Kendall's
tau (t). Tau is defined in Conover (1999), Hollander
and Wolfe (1999), and other books on nonparametric
statistics.

Based on the data of Table 6.9, the hypothesis of no
correlation between X and Y was tested. Kendall's
tau gave a p-value of 0.08. This calculation indicates
that the very slight trend seen in Figure 6.24 is not
statistically significant

Recall, from the discussion of Section 6.2.3.1.2, that
a small p-value is not the end of an analysis. The p-
value for this example, although larger than the
customary cut-off of 0.05, is fairly small. This indi-
cates that the trend in Figure 6.24 is somewhat
unlikely under the assumption of no correlation. If
we are concerned about this fact, we must seek
possible engineering mechanisms for the trend. The
data are times between LOSP events in the industry
as a whole. Therefore, the most plausible explana-
tion is the overall industry trend of fewer shutdown
LOSP events. This trend would produce a tendency
for the short times to occur together (primarily near
the start of the data collection period), and the long
times to occur together (primarily near the end of the
data period).

6.2.3.3 Consistency of Data and Prior

As an example, if the prior distribution has mean
E,,(A), but the observed data show xlt very different
from the prior mean, the analyst might wonder if the
data and the prior are consistent, or if, instead, the prior
distribution was misinformed. To investigate this, one
could ask what the prior probability is of getting the
observed data. Actually, any individual x may have
small probability, so a slightly more complicated
question is appropriate.

Suppose first that xlt is in the right tail of the prior
distribution. The relevant quantity is the prior probabil-
ity of observing x or more events. This is

In general, Equation 6.6 does not have a direct analyti-
cal expression. However, in the special case when the
prior distribution is gamma(as,, pw,,8,,), it can be shown
that the probability in question equals

Pr( X 2 x) =

1I X(a + k) a -(a+*)

&=o k!r(a)
(6.8)

where r(s) is the gamma function, a generalization of
the factorial function as described in Appendix A.7.6.
The distribution defined by Equation 6.8 is named the
gamma-Poisson or negative binomial distribution.
The above probability can be evaluated with the aid of
software.

When Equation 6.8 is not applicable, one method of
approximating the integral in Equation 6.6 is by Monte
Carlo sampling. Generate a large number of values of
A from the prior distribution. For each value ofi, let y
be the value of Equation 6.7, which can be calculated
directly. The average of they values is an approxima-
tion of the integral in Equation 6.6. Another method of
approximating the Equation 6.6 is by numerical integra-
tion.

If the probability given by Equation 6.6 is small, the
observed data are not consistent with the prior belief-
the prior belief mistakenly expected A to be smaller
than it apparently is. When should the probability be
considered "small"? Many people consider probabili-
ties < 0.05 to be "small," but there is no rigid rule.

Similarly, ifxit is in the left tail of the prior distribution,
the relevant quantity is the prior probability that X s x.
When the prior is a gamma distribution, the desired
probability is the analogue of the sum in Equation 6.8,

Pr(X x)= ; rc(a+k) Ak a + t
ky-0 -r(a) (

In any case, the desired probability can be approxi-
mated by Monte Carlo sampling. If that probability is
small, the prior distribution mistakenly expected A to be
larger than it apparently is.

!I

Pr(X Ž x) = IJPr(X Ž AA,)fwj,(A)dA (6.6)
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In Example 6.3, we ask whether the observed zero
failures in 2102 reactor-calendar-years is consistent
with the WASH-1400 prior, lognormal with median
1 E-3 per year and error factor 10. To investigate
this, 100,000 random values of A were generated
from the lognormal prior. (The details are given
below.) For each A, Pr(X s 0) = exp(-2102A) was
found. The mean of these probabilities was 0.245.
This is a sample mean, and it estimates the twue
probability. It is not small, and therefore gives no
reason to question the applicability of the prior.

One must ask whether the sample was large enough.
The software that calculated the sample mean also
calculated the standard error to be 0.0009. Recall
from Section 6.2.1.2 that in general a 95% confi-
dence interval can be approximated as the estimate
plus or minus 2x(standard error). In this case, this
interval becomes 0.245 * 0.002. We conclude that
the true mean equals 0.245 except perhaps for
random error in the third digit. This shows that the
sample size was more than large enough to give an
answer to the accuracy required.

The recipe for generating A from a lognormal distribu-
tion is as follows:

(1) Generate z from a standard normal distribution,
using commercial software,

(2) Define loglam = p/ + oz where pu and a were
found in Section 6.2.2.7.2, and then

(3) Define lambda = exp(loglam).

6.3 Failures to Change State:
Failure on Demand

This section is similar to Section 6.2, but the details are
different. The structure of this section parallels that of
Section 6.2 almost exactly, and some admonitions from
that section are repeated here. The most important
topics for a first-time reader are:

* Maximum likelihood estimation (6.3.1.1),
* Bayesian estimation, especially with a discrete

prior or a conjugate prior (6.3.1-6.3.2.3), and
* Model validation, especially using graphical tools

(portions of 6.3.3).

This section applies to data satisfying the assumptions
of Section 2.3.2.1. The probability of a failure on
demand is denoted p, a unitless quantity. The data
consist of x failures in n demands, with 0 5 x S n.
Before the data are generated, the number of failures is
random, denoted X. For any particular number x, the
probability of x failures in n demands is

Pr(X= X) = (n) Px(I_ P)n-x (6.9)

where the binomial coefficient is defined as

'k) k!(n - k)!

The methods will be illustrated by the following hypo-
thetical data set.

Example 6.7 AFW turbine-train failure to start

In the last 8 demands of the turbine train of the
auxiliary feedwater (AFW) system at a PWR, the
train failed to start 1 time. Let p denote the
probability of failure to start for this train.

As in Section 6.2, frequentist methods are presented
first, followed by Bayesian methods. This choice is
made because the frequentist point estimate is so very
simple, not because frequentist estimation is preferable
to Bayesian estimation. Indeed, in PRA p is normally
estimated in a Bayesian way.

6.3.1 Frequentist or Classical Estimation

6.3.1.1 Point Estimate

The most commonly used frequentist estimate is the
maximum likelihood estimate (MLE). It is found by
taking the likelihood, given by Equation 6.9, and
treating it as a function of p. The value ofp that maxi-
mizes the likelihood is called the MILE. It can be
shown, by setting a derivative to zero, that the maxi-

mum likelihood estimate (MILE) of p is A = x / n.

This is intuitively appealing - the observed number of
failures divided by the observed number of demands.

Figure 6.25 shows the likelihood as a function of p,
for the data of Example 6.7. The figure shows that
the likelihood is maximized at p = 1/8, as stated by
the formula.

If several subsets of data, such as data corresponding to
several plants, several types of demand, or several
years, are assumed to have the same p, data from the
various sources may be combined, or pooled, for an
overall estimate. Denoting the number of failures and
demands in data subsetj by xj and n1, respectively, letx
= 2x and n = En,. The MLE is xn.
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In Example 6.7, the standard error for p is

0.0 0.1 02 0.3 0.4 05

:P

Figure 6.25 Likelihood as a function of p, for the
data of Example 6.7.

As mentioned in Section 6.2.1.1, final answers will be
shown in this handbook with few significant digits, to
avoid giving the impression that the final answer
reflects precise knowledge of the parameter. Inter-
mediate values will show more significant digits, to
prevent roundoff errors from accumulating.

63.1.2 Standard Deviation of Estimator

The number of failures is random. One number was ob-
served, but if the demands were repeated a different
number of failures might be observed. Therefore, the
estimator is random, and the calculated estimate is the
value it happened to take this time. Considering the
data as random, one could write A = X / n . This
notation is consistent with the use of upper case letters
for random variables although it is customary in the
literature to write A for both the random variable and
the calculated value. The standard deviation of the
estimator is [p(l - p)InJ 2. Substitution of the
estimate p for p yields an estimate of the standard

deviation,

l^(l ^) ]112

The estimated standard deviation of an estimator is also
called the standard error of the estimate. The handy
rule given in Section 6.2.1.2 applies here as well:

MLE ± 2x(standard error)

is an approximate 95% confidence interval forp, when
the number of demands, n, is large. However, an exact
confidence interval is given below.

10.125 x(1 - 0.125) /8]" = 0.12.

63.13 Confidence Interval forp

Confidence intervals are used in two ways in this
handbook. They give a standard of comparison, when
Bayes credible intervals are found based on so-called
noninformative priors, and they can be used (but are not
required) in some plots for validating model assump-
tions. Therefore, readers may wish to skim the present
section quickly on the first reading.

The interpretation of confidence intervals is given in
Appendix B and in Section 6.2.1.3. It is so important
that it is repeated here. In the frequentist approachp is
fixed and the data are random. Therefore the maximum
likelihood estimator and the confidence limits are all
random. For most data sets, the MLE,p, will be close
to the true value of p, and the confidence interval will
contains. Sometimes, however, the MILE will be rather
far from p, and sometimes (less than 10% of the time)
the 90% confidence interval will not contain p. The
procedure is good in the sense that most of the time it
gives good answers, but the analyst never knows if the
current data set is one of the unlucky ones. A figure
like Figure 6.4 could be constructed for pto illustrate
that many data sets could be generated from the same p,
yielding many confidence intervals, most of which
contain the true value of p.

The following material is drawn from Johnson et al.
(1992, Section 3.8.3). A confidence interval for p can
be expressed in terms of percentiles of a beta distribu-
tion. Appendix A.7.8 presents the basic facts about the
beta distribution. As mentioned there, the beta family
of distributions includes many distributions that are
defined on the range from 0 to 1, including the uniform
distribution, bell-shaped distributions, and U-shaped
distributions. The beta distribution is also discussed
more fully in the section below on Bayesian estimation.

Denote the lower and upper ends of a 100(1 - a)%
confidence interval by Pool 2 and p.., -,2, respec-
tively. It can be shown that the lower limit is

p.4, a = beta.2(x, n - x + 1)

and the upper limit is

pc.4 1-.2 = beta, - n(x + 1, n - x)
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where betaq(m, fl) denotes the q quantile, or IOOxq
percentile, of the beta(a, fli distribution. For example,
a 90% confidence interval forp is given by betao.5(x, n
- x + I) and beta 95(x + 1, n - x). If x = 0, the beta
distribution for the lower limit is not defined; in that
case, setp, ,. =0. Similarly, if x = n, the beta distri-
bution for the upper limit is not defined; in that case, set
p.., I - 2 = 1. In any case, note carefully that the
parameters of the beta distribution are not quite the
same for the lower and upper endpoints.

Appendix C tabulates selected percentiles of the beta
distribution. However, interpolation may be required.
Some software packages, including commonly used
spreadsheets such as Microsoft Excel (2001) and
Quattro Pro (2001), calculate the percentiles of the beta
distribution. Those calculations are more accurate than
interpolating tables. Finally, Appendix A.7.8 gives a
last-resort method, which allows beta percentiles to be
calculated by complicated formulas involving tabulated
percentiles of the F distribution.

In Example 6.7, with 1 AFW train failure in 8
demands, suppose that a 90%h interval is to be
found. Then a= 0.10, and 1-a12 = 0.95. For the
lower limit, betao.0(1, 8-1+1) = 6.39E-3, from
Table C.5. Thus,

Pco.. 0.06 = 0.0064.

For the upper limit, betao95(1+1, 8-1) = 4.71E-1,
also from Table C.5. Thus,

pc, o.95s = 0-47.

6.3.2 Bayesian Estimation

Section 6.2.2.1 gives an overview of Bayesian estima-
tion, which applies here. Just as for A in that section,
Bayesian estimation of p involves several steps. The
prior belief about p is quantified by a probability
distribution, the prior distribution. This distribution
will be restricted to the range [0,11, because p must lie
between 0 and 1, and it will assign the most probability
to the values of p that are deemed most plausible. The
data are then collected, and the likelihood function is
constructed. The likelihood function is given by
Equation 6.9 for failures on demand. It is the probabil-
ity of the observed data, written as a function of p.
Finally, the posterior distribution is constructed, by
combining the prior distribution and the likelihood
function through Bayes' theorem. The posterior
distribution shows the updated belief about the values
of p. It is a modification of the prior belief that ac-
counts for the observed data.

Figure 6.5, showing the effect of various data sets on
the posterior distribution, is worth studying. Although
that figure refers to A, exactly the same idea applies
top.

The subsections below consider estimation of p using
various possible prior distributions. The simplest prior
distribution is discrete. The posterior can be calculated
easily, for example, by a spreadsheet. The next sim-
plest prior is called conjugate; this prior combines
neatly with the likelihood to give a posterior that can be
evaluated by simple formulas. Finally, the most general
priors are considered; the posterior distribution in such
a case can only be found by numerical integration or by
random sampling.

Section 6.2.2.2 discusses how to choose a prior, and
gives references for further reading. It applies to
estimation of p as much as to estimation of A, and
should be read in connection with the material given
below.

6.3.2.1 Estimation with a Discrete Prior

The explanation here will be easier to follow if the
examples in Section 6.2.2.3 have also been read. The
parameter p is assumed to take one of only m possible
values, pi, ... , p,,. Denote the p.d.f. by f, so ftP,) =
Pr(p,), the prior probability that the parameter has the
valuep1. After evidence E is observed, Bayes' theorem
says:

f (Pi.E) = f (p,) L(El pi)
pal ',.L(EI p,)f (p,)

(6.10)

where

flp5i E) = the probability of p, given evidence E
(posterior distribution),

flp1 ) = the probability ofp, prior to having evidence
E ( prior distribution), and

l(E p i,) = the likelihood function (probability of the
evidence given p,).

Just as in Section 6.2.2.3, the denominator in Equation
6.10, the total probability of the evidence E, is simply
a normalizing constant.

When the evidence is in the form of x failures in n
demands and the assumptions for a binomial distribu-

6-33



Parameter Estimation and Model Validation

tion are satisfied, the likelihood function is the given by
Equation 6.9:

L(Elp ) x) P. (1- Pi

As an example, let us use the data in Example 6.7.
We will use a discrete prior distribution, just as in
Section 6.2.2.3. Unlike the examples in that earlier
section, the present example uses an informed prior.
Assume that a prior distribution was developed by
plant equipment experts based on population vari-
ability data from similar systems, but adapted to
account for untested new design aspects of this
system. The prior is defined on 81 points, for p = 0,
0.01, 0.02, ..., 0.8. The most likely value is p = 0.1.
From there, the prior falls linearly until p = 0.3, then
tails off to 0 at p = 0.8. On the low end it falls
linearly to 0 at p = 0. The distribution is shown in
Figure 6.26.

po.n

0.0 0.1 02 0. OA 0.5 0.6 0.7 0.8
Jp

Figure 6.27 Discrete prior and posterior distribution
*-for data in Example 6.7.

Note that the posterior follows the shape of the prior
very closely. This is because the data are consistent
with the peak area of the prior, but are not yet strong
enough to appreciably reduce the uncertainty in the
prior - there are only eight demands.

What happens to this posterior as additional data
accumulate? Suppose that ten times as much data
had been collected, 10 failures in 80 demands. The
likelihood function, given by Equation 6.9 with this
new data set, is shown in Figure 6.28.

0.0 0s 02 0.3 0.4 0.5 0.8 0.7 0O

p

Figure 6.26 Discrete informative prior distribution
for p.

This prior is discrete. We will want to compare the
prior with the posterior distribution, and the graph of
two discrete distributions is easier to read if just the
tops of the vertical bars are plotted. The resulting
plot of the prior looks like a continuous density, but it
still is intended to represent the above discrete
distribution.

The likelihood function is shown in Figure 6.25. The
posterior distribution is proportional to the product of
the prior and the likelihood, normalized so that the
total probability equals 1. Figure 6.27 shows the
prior and the posterior distributions on the same plot

0.04

0.0 0.1 02 0.3 0.4 0.5
p

Figure 6.28 Ukelihood as a function of p, for ten
times the data of Example 6.7.

The posterior distribution is proportional to the
product of the prior and this new likelihood. Figure
6.29 shows the prior and this new posterior.

Table 6.10 compares the results of the Bayesian
analyses with the original data and with ten times as
much data.
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63.2.2.1 Definitions

By far the most convenient form for the prior distribu-
tion of p is a beta(a%, Apr) distribution. The beta
distributions are the conjugate family for binomial data.
The properties of the beta distribution are therefore
summarized here, as well as in Appendix A.7.8.

If p has a beta(a, /) distribution, the density is

f(P) =p(a + P (lp)

For most applications the gamma functions in the front
can be ignored - they only form a normalizing con-
stant, to ensure that the density integrates to 1. The
important feature of the density is that

0.0 0.1 02 0.3 0.4 0.5 0.6 0.7 0e
p

Figure 6.29 Discrete pnorand posterordistrbutions
for p, with 10 times as much data as in previous
figure.

Table 6.10 Comparison of Bayesian
distributions. AtP) ocp'-'(1 - O" (6.11)

Distribution 5th mean 95th
%tile %tile

Prior 0.04 0.206 0.54

Posterior, original 0.05 0.153 0.29
data

Posterior, ten times 0.07 0.130 0.19
more confirmatory
data

where the symbol - denotes "is proportional to." The
parameters of the distribution, ar and /, must both be
positive. The mean and variance of the distribution are

p = &(a+.A

variance =
(a+ )296(a+ ,6+ 1)

= p(1-jO/(a+Pe-I).

(6.12)

(6.13)

The difference between the two posterior distribu-
tions results from the differences between the two
likelihoods. In this hypothetical example, both data
sets have the same MLE, 0.125, but the larger data
set has a likelihood that is more concentrated. The
posterior distribution from the larger data set is
dominated by the likelihood, and closely resembles
it

Readers are strongly encouraged to work through a few
examples like this on their own. The calculations are
easy to carry out with a spreadsheet.

6312 Estimation with a Conjugate Prior

We now consider the use of continuous prior distribu-
tions, beginning with a very convenient family of
distributions, the conjugate priors.

The shape of the beta density depends on the size of the
two parameters. If a< 1, the exponent of p is negative
in Equation 6.11, and therefore the density is un-
bounded as p - 0. Likewise, if 6 < 1, the density is
unbounded as p - 1. If both a > l and / > 1, the
density is roughly bell shaped, with a single mode.
Appendix A.7.8 shows graphs of some beta densities.
Equation 6.13 shows that as the sum a + 6 becomes
large, the variance becomes small, and the distribution
becomes more tightly concentrated around the mean.

As will be seen below, if the prior distribution is a beta
distribution, so is the posterior distribution. Therefore,
the above statements apply to both the prior and the
posterior distributions.

Appendix C tabulates selected percentiles of beta
distributions. Also, the percentiles of a beta distribution
can be found by many software packages, including
some spreadsheets. Also, the percentiles can be ob-
tained from algebraic formulas involving percentiles of
the F distribution, as explained in Appendix A.7.8.
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63.2.2.2 Update Formulas

The beta family is conjugate to binomial data. That is,
updating a beta prior distribution with the data produces
a posterior distribution that is also a beta distribution.
This follows immediately from the derivation of the
posterior distribution. By Bayes' theorem (Appendix
B.5), the posterior distribution is related to the prior
distribution by

fp (p) Pr(X = xiP)fpr (P). (6.14)

This is the continuous analogue of Equation 6.10. As
mentioned in the earlier sections, the probability of the
data is also called the "likelihood." It is given by
Equation 6.9. Stripped of all the normalizing constants,
the beta p.d.f. is given by Equation 6.11.

Therefore, the beta distribution and the binomial
likelihood combine as:

fp.,(p) - pX(I - P)RI xpa(1 - p

In the final expression, everything that does not involve
p has been absorbed into the proportionality constant.
This shows that the posterior distribution is of the form
beta(apO,,,6). with

a,,= a. + x
lp. = fp, + (n - x).

The mean and variance of the prior and posterior
distributions are given by Equations 6.12 and 6.13,
using either the prior or posterior a and a
These update formulas give intuitive meaning to the
beta parameters: ar corresponds to a prior number of
failures and fl' to a prior number of successes.
Assuming a beta(anr, fpi, ) distribution is equivalent
to having observed v. failures and 0, successes
before the current data were observed.

63.23 Possible Conjugate Priors

A concentrated distribution (small variance, large value
of ae, + 8),,.,) represents much presumed prior know-
ledge. A diffuse prior (large variance, small value of
v + fpl) represents very little prior knowledge ofp.

63.23.1 Informative Prior

The warning given in Section 6.2.2.5.1 applies here as
well: the prior distribution must be based on informa-

tion other than the data. If possible, relevant informa-
tion from the industry should be used.

The calculations are now illustrated with Example
6.7, one failure to start in eight demands of the AFW
turbine train. Poloski et al. (1998) examined nine
years of data from many plants, and found a
beta(4.2, 153.1) distribution for the probability of the
AFW train failure to start.

Application of the update formulas yields

ap,,, = ap"O, + x= 4.2 + 1 = 5.2
p, = Opn,0, + (n - x = 153.1 + (8 - 1) = 160.1.

The mean of this distribution is

5.2/(5.2 + 160.1) = 0.031,

and the variance is

0.031x(1 - 0.031)/(5.2 + 160.1 + 1) = 1.89E-4,

and the standard deviation is the square root of the
variance, 0.014. The 5th and 95th percentiles of the
posterior beta(a', 3 distribution are found from Table
C.5, except the tabulated 0values do not go above
100. A footnote to that table gives an approximation
that is valid for 3 >> a. That formula applies, be-
cause 160.1 >> 5.2. According to the formula the q
quantile is approximated by

4q(2x5.2)42x160.1 + e(2x5.2)J.

Therefore the 5th percentile of the beta distribution is
approximately

je0 ,5(10.4)4[320.2 +Io.05(10.4)] = 4.194320.2 + 4.19]
= 0.013,

and the 95th percentile is approximately

ze.,,(10.4)4320.2 + eO.,,(10.4)J = 18.864320.2 +
18.86] = 0.056.

All these quantities are unitless.

The prior density, posterior density, and posterior
c.d.f. of p are shown in Figures 6.30 through 6.32.

The posterior density is slightly to the right of the
prior density. It is to the right because the data, one
failure in eight demands, show worse performance
than the industry history. The posterior density is
only slightly different from the prior density because
the data set is small compared to the industry experi-
ence (eight demands in the data and an effective
157.3 demands for the industry).

6-36



Parameter Estimation and Model Validation

6.3.2.3.2 Noninformative Prior

The Jeffreys noninformative prior is beta(% , Vz); see
Box and Tiao (1973), Sections 1.3.4-1.3.5. This
density is shown in Figure 6.33. It is not the uniform
distribution, which is a beta(l, 1) distribution, but
instead rises sharply at the two ends of the interval
(0,1).
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Figure 6.30 Prior density for p, beta(42, 153.1). C
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Fgure6.31 Posteriordensityforpbeta(52,160.1).
The 5th and 95th percentiles are shown.
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Figure 6.32 Posterior cumulative distribution of p.
The 5th and 95th percentiles are shown.

The 5th and 95th percentiles are shown for the
posterior distribution, both in the plot of the density
and in the plot of the cumulative distribution.

Although the uniform distribution is sometimes used to
model no prior information, there are theoretical
reasons for preferring the Jeffreys noninformative prior.
These reasons are given by Box and Tiao, and are
suggested by the comparison with confidence intervals
presented below. The uniform distribution would
correspond intuitively to having seen one failure in two
demands, which turns out to be too informative. The
Jeffreys noninformative prior corresponds to having
seen one-half a failure in one demand.

The Bayes posterior distribution for p, based on the
Jeffreys noninformative prior, is beta(x + 45, n - x + Va).
The mean of the distribution is (x + %)I( n + 1). Se-
lected percentiles are tabulated in Appendix C.

The posterior distribution given here is very similar to
the distributions used in the formulas for confidence
intervals in Section 6.3.1.3. The only difference is in
the parameters. The parameters here are averages of
the parameters used in the confidence intervals. For
example, the first parameter for the lower confidence
limit is x, and the first parameter for the upper confi-
dence limit is x+1. The Bayesian limits, on the other
hand, use the same parameters for the entire posterior
distribution, and the first parameter is x + Va, the aver-
age of the corresponding values for the confidence
limnits.
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In Example 6.7, failure to start of the turbine-driven
AFW train, the posterior distribution is beta(1.5, 7.5).
The posterior mean is 1.5/(1.5 + 7.5) = 0.17. The
posterior 90% interval is (0.023, 0.40). As is always
the case with discrete data, the confidence interval is
conservative, and so is wider than the Jeffreys
credible interval. However, the two intervals are
similar to each other, being neither to the right nor
the left of the other. Tabular and graphical compari-
sons are given later.

6.3.2.3.3 Constrained Noninformative Prior

This prior distribution is a compromise between an
informative prior and theJeffreys noninformative prior.
As was the case in Section 6.2.2.5.3, the prior mean,
denoted here as po, is based on prior belief, but the
dispersion is defined to correspond to little information.
The priors are described by Atwood (1996) and by
references given there.

For binomial data, the constrained noninformative prior
distribution is not as neat as for Poisson data. The
exact constrained noninformative prior has the form

6.3.2.3.4 Example Comparison of Above Methods

Just as in Section 6.2, the following general statements
can be made:

* The Jeffreys noninformative prior results in a
posterior credible interval that is numerically
similar to a confidence interval.

* If the prior mean exists, the posterior mean is
between the prior mean and the MLE.

* If two prior distributions have about the same
mean, the more concentrated (less diffuse) prior
distribution will yield the more concentrated
posterior distribution, and will pull the posterior
mean closer to the prior mean.

Figure 6.34 and Table 6.11 summarize the results of
analyzing the AFW-failure-to-start data in the four
ways given above.

Freaq u .
Bayes, Jes Noit Prior

Bayes, isby NPriW
Bayes,iCa. Naw. pow

f~jinr(p) -eb~p- f2l( _- )- (6.15)

where b is a number whose value depends on the
assumed value of the mean, po. The parameter b is
positive when pa > 0.5 and is negative when pa < 0.5.
Thus, in typical PRA analysis b is negative. Atwood
(1996) gives a table of values, a portion of which is
reproduced in Appendix C as Table C.8. The table
gives the parameter b of the distribution for selected
values ofp 0. In addition, it gives a beta distribution that
has the same mean and variance as the constrained
noninformative prior.

The beta approximation is illustrated here, and the exact
constrained noninformative distribution is treated more
fully in the section below on nonconjugate priors.

Return again to Example 6.7, the AFW turbine train
failure to start. Let us use the mean of the industry
prior found above, 4.2/157.3 = 0.0267. However,
suppose that the full information for the industry prior
is not available, or that the system under consider-
ation is considered atypical so that the industry prior
is not fully relevant. Therefore, the beta-approxima-
tion of the constrained noninformative prior will be
used.

Interpolation of Table C.8 at po = 0.0267 yields a=
0.4585. Solving 8= a(1 - pb)ypb gives P = 16.7138.
The resulting posterior distribution has parameters
1.4585 and 23.7138. Interpolation of Table C.5 gives
a 90% interval of (0.0068,0.15).

- - - - - - - - - - -
0 0.1 02 03 0.4 0.5

pfat&1 Mden Gmmus
Figure 6.34 Comparison of four point estimates and
interval estimates for p.

As in Section 6.2.2.5.4, the Jeffreys prior and the
frequentist approach are listed next to each other
because they give numerically similar results. The
Jeffreys prior yields a posterior credible interval that
is strictly contained in the confidence interval, neither
to the right nor to the left.

In each Bayesian case, the posterior mean falls
between the prior mean and the MLE, 0.125. The
prior distribution has more influence when the prior
distribution is more tightly concentrated around the
mean. One measure of the concentration (at least
when the means are similar) is the sum ap,, + pr,
because it corresponds to the total number of prior
demands, and it is in the denominator of the variance
in Equation 6.13. In the present example, when the
prior distributions in Table 6.11 are ordered by
increasing values of ap,,, + X6-, the order is the
noninformative prior, then the approximate con-
strained noninformative prior, and finally the industry
prior. The three 90% intervals for the corresponding
posterior distributions have decreasing length in the
same order.
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Table 6.11 Comparison of estimates with one failure In eight demands.

Method Prior mean Posterior Point estimate 90% interval (confidence
parameters (MLE or interval or posterior credi-

posterior mean) ble interval)

Frequentist NA NA 0.125 (0.0064, 0.47)

Bayes with Jeffreys 0.5 a= 1.5 0.17 (0.022, 0.40)
noninformative prior, A= 7.5
beta(0.5, 0.5) l

Bayes with industry prior, 0.027 a= 5.2 0.031 (0.013, 0.056)
beta(4.2,153.1) 0= 160.1

Bayes with approx. con- 0.027 a= 1.4585 0.058 (0.0068,0.15)
strained noninform. prior, 0= 23.7138
beta(0.4585, 16.7138)

63.2.4 Estimation with a Continuous
Nonconjugate Prior

Just as for A, continuous nonconjugate priors for p
cannot be updated with simple algebra. The resulting
posterior distribution does not have a simple form.
Therefore, to enter it as the distribution of a basic event
in a PRA code, a discrete approximation of the distribu-
tion must usually be used.

The posterior distribution must be obtained by numeri-
cal integration or by random sampling. Three methods
are mentioned here, and the analyst may choose what-
ever seems easiest.

632.4.1 Direct Numerical Integration

To use numerical integration, use Equation 6.14 and
write the posterior distribution as the product of the
likelihood and the prior distribution:

632.4.2 Simple Random Sampling

To use random sampling, follow the rejection algorithm
given in Section 6.2.2.6. The general algorithm, given
in Section 6.2.2.6, can be restated for binomial data as
follows. Define

m = (xIn)(1 - xn)"

if 0<x<n. Ifx=Oorx=n,definem=1. Thesteps
of the algorithm are:

(1) Generate a random p from the prior distribution.
(2) Generate u from a uniform distribution, 0 s u s 1.
(3) If u 5 p'(1 - p)"''Im, accept p in the sample.

Otherwise discard p.

Repeat Steps (l) through (3) until a sample of the
desired size is found.

632.43 More Complicated Random Sampling

All-purpose Bayesian update programs can be used for
the present simple problem, just as in Section 6.2. The
powerful program BUGS is mentioned in Section
6.2.2.6.3, and described more fully in Sections 7.2.3
and 8.3.3.3. It can be used here, although it is intended
for much more complicated problems.

6.3.2.5 Examples with Nonconjugate Priors

Several possible nonconjugate prior distributions are
discussed here.

Cf~,.(P) = p'(I - p)N 'U (6.16)

Here C is a constant of proportionality. All the normal-
izing constants in fpr and in the likelihood may be
absorbed into C, leaving only the parts that depend on
p on the right-hand side of the equation. Integrate
Cfp..(p) from 0 to 1. That is, integrate the right hand
side of Equation 6.16. This integral equals C, because
the integral offp, must equal 1. Divide both sides of
Equation 6.16 by the just-found constant C, to obtain
the functionfP,,. Use numerical integration to find the
moments and percentiles of this distribution. Some
suggested methods of numerical integration are men-
tioned in Section 6.2.2.6.
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6.3.2.5.1 Lognormal Distribution

The lognormal distribution is by far the most commonly
used nonconjugate distribution. The parameter p has a
lognormal distribution if In(p) is normally distributed
with some mean ju and variance od.

Facts about the lognormal distribution are given in
Appendix A.7.3. One important fact is that the range of
the lognormal distribution is from 0 to A. Thus, the
distribution of p cannot be exactly lognormal, because
p cannot be greater than 1. When using a lognormal
prior, one must immediately calculate the prior Pr(p >
1). If this probability is very small, the error can be
neglected. (When generating values p from the log-
normal distribution, either throw away any values
greater than I or set them equal to 1. In either case,
such values hardly ever occur and do not affect the
analysis greatly.) On the other hand, if the prior Pr(p >
1) is too large to be negligible, then the lognormal
distribution cannot possibly be used. Even if the
software accepts the lognormal distribution, and hides
the problem by somehow handling the values that are
greater than 1, the actual distribution used is not
lognormal. It is truncated lognormal, or lognormal with
a spike at 1, with a different mean and different percen-
tiles from the initially input lognormal distribution. The
analyst's two options are to recognize and account for
this, or to use a different prior distribution.

To use the above sampling algorithm with a lognormal
prior, p must be generated from a lognormal distribu-
tion. The easiest way to do this is first to generate z
from a standard normal distribution, that is, a normal
distribution with mean = 0 and variance = 1. Many
software packages offer this option. Then, let y = ,u +
oz, so that y has been generated from a normal(A, od)
distribution. Finally, let p = el. It follows that p has
been randomly generated from the specified lognormal
distribution.

63.2.5.2 Logistic-Normal Distribution

This distribution is explained in Appendix A.7.9. The
parameter p has a logistic-normal distribution if
lntp/(l - p)J is normally distributed with some mean A
and variance od. The function In [pI(l - p)] is called
the logit function of p. It is an analogue of the
logarithm function for quantities that must lie between
0 and 1. Using this terminology,p has a logistic-normal
distribution if logit(p) is normally distributed.

Properties of the logistic-normal distribution are given
in Appendix A.7.9, and summarized here. Let y =
ln[p/(I - p)]. Thenp = el / (I + el). This is the inverse

of the logit function. As p increases from 0 to 1, y
increases from -a to +X.

Note, unlike a lognormally distributed p, a logistic-
normally distributed p must be between 0 and 1.
Therefore, the logistic-normal distribution could be
used routinely by those who like the lognormal distribu-
tion, but do not know what to do when the lognormal
distribution assigns p a value that is greater than 1.

The relation between p and y = logit(p) gives a way to
quantify prior belief about p in terms of a logistic-
normal distribution. First, decide on two values, such
as lower and upper plausible bounds on p or a median
and plausible upper bound, equate them to percentiles
of p, translate those percentiles to the corresponding
two percentiles of the normal random variable Y, and
finally, solve those two equations for pi and o.

To generate a random value from a logistic-normal
distribution, first generate y from a normal (p. oF)
distribution, exactly as in the section above on the
lognormal distribution. Then letp = e / (I + el). This
p has been randomly generated from the specified
logistic-normal distribution.

6.3.2.53 Exact Constrained Noninformative
Distribution

The prior distribution has the form of Equation 6.15,
and the posterior distribution is

fy(p) = Cle'Pp' -12 mu _ -py -I -In1

where C, is a normalizing constant to make the density
integrate to I.0. Except for the normalizing constant,
this is eLP times a beta(x+V, n-x+%) distribution.
Numerical integration is straightforward, and will not
be explained here. To generate a sample from the
posterior distribution, the rejection method algorithm
originally given in Section 6.2.2.6 takes the following
form.

Write the beta(x+%, n-x+V2) density as

fbmw(p = c2px - 1/2a - Pr0 -X -In

Typically, the desired mean of p is less than 0.5; if it is
not, reverse the roles of p and I - p. The algorithm
first defines M to be the maximum possible value of the
ratiofp,(p) /f&Jp). Because b < 0 in Table C.8, we
have e'& s 1, making M equal to CI/C2. Therefore, the
condition in Step (3) of the algorithm reduces to

Xs: ea.
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Therefore, the algorithm simplifies to the following:

(I) Generate a random p from the beta(x+ V, n-x+Va)
distribution. Ways to do this are discussed below.

(2) Generate u from a uniform distribution, 0!5 u 5- 1.
(3) If u s e"', accept p in the sample. Otherwise

discard p.

Repeat Steps (1) through (3) until a sample of the
desired size is found.

Not all standard software packages give the option of
generating random numbers from a beta distribution,
although many more allow random number generation
from a gamma distribution or from a chi squared
distribution. When working with such software, let y,
be randomly generated from a gamma(x+%, I) distribu-
tion and let Y2 be randomly generated from a
gamma(n-x+%, 1) distribution. Alternatively, lety, be
randomly generated from a chi-squared(2x+1) distribu-
tion and let Y2 be randomly generated from a chi-
squared(2n-2x+1) distribution. In either case, definep
= yll(Y,+Y2). Then, p has been generated from the
specified beta(x+½, n-x+YV) distribution. (See Chapter
25 of Johnson et al. 1995.)

6.3.2.5A Maximum Entropy Prior

The maximum entropy prior and the constrained nonin-
formative prior were developed with the same goal: to
produce a diffuse distribution with a specified plausible
mean. The diffuseness of the maximum entropy distri-
bution is obtained by maximizing the entropy, defined
as

-E[In f (p)] = -In f (p)]f(p)dp .

When p is restricted to the range from 0 to 1, it can be
shown that the density f maximizing the entropy is
uniform,

J(p)= I for0 sp s I

The maximum entropy distribution and the uniform
distribution are related - if the constraint on the mean
is removed, the maximum entropy distribution equals
the uniform distribution. In this sense, the maximum
entropy distribution is a generalization of the uniform
distribution. The constrained noninformative distribu-
tion is the same sort of generalization of the Jeffreys
noninformative distribution - if the constraint is
removed, the constrained noninformative prior becomes
the Jeffreys noninformative prior. Atwood (1996)
reviews the reasons why the Jeffreys prior is superior to
the uniform prior, and uses the same reasoning to argue
that the constrained noninformative prior is superior to
the maximum entropy prior.

In practice, it may make little difference which distribu-
tion is used. Both distributions are intended to be used
when little prior knowledge is available, and quantify-
ing "little prior knowledge" is not something that can be
done precisely.

Sampling from the posterior distribution is similar to
the other sampling procedures given above, so most of
the details are not given. The only point deserving
discussion is how to generate a random sample from the
maximum entropy prior. The most convenient method
is the inverse cd.f. algorithm. This algorithm is
simple in cases when the c.d.f. and its inverse can be
calculated easily.

For example, let the random variable P have c.d.f. F.
Let F' be the inverse function, defined by u = F(p) if
and only ifp = F'(u). Let U be defined as F(P). What
is the distribution of U? The c.d.f. of U is found by

Pr(U s u) = Pr[ F(P) s u ]
= Pr[ P s F-1(u) I
= El F(u) ] because F is the c.d.f. of P
=u.

Therefore, U has a uniform distribution. The letter U
was not chosen by accident, but in anticipation of the
uniform distribution.

and ftp) = 0 elsewhere. More interesting is the case
when the mean of the distribution is required to equal
some prespecified value po. In this case the maximum
entropy distribution has the form of a truncated expo-
nential distribution,

ftp) = CeP for 0 s p s I

andJfp) = 0 elsewhere. In this form, b is negative when
pa < 0.5 and b is positive when po > 0.5. The value of
b corresponding to a particular mean must be found by
numerical iteration. Some authors write e*P instead of
esP; this simply reverses the sign of the parameter b.

To generate a random value p from the distribution F,
generate a random u from the uniform (0, 1) distribu-
tion, something that many software packages allow.
Then define p = F'(u). This is the inverse c.d.f.
method of random number generation.

To apply this to the maximum entropy distribution, first
integrate the maximum entropy density to yield the
c.d.f.

F(p) = (I - e0P)l(I - e*)
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Generate u from a uniform(O, l) distribution, and set

u =( - eP)I(l - eb)

Solve this equation for p,

p= -In[ I - (I - e')u lb.

Then, p has been randomly generated from the maxi-
mum entropy distribution. Repeat this with new values
of u until enough values of p have been obtained.

6.3.2.5.5 Example Calculation

These techniques will be illustrated with the
Example 6.7, one failure to start in eight demands of
the AFW turbine train. Two prior distributions will be
assumed, the lognormal prior used by the Accident
Sequence Evaluation Program (ASEP), as presented
by Drouin et al. (1987), and a logistic-normal distribu-
tion having the same 50th and 95th percentiles.

The ASEP distribution forturbine-driven pump failure
to start is lognormal with mean 3E-2 per demand
and error factor 10. The three relevant equations
from Appendix A.7.3 are

EF(p) = exp(1.645o)
mean(p) = exp(/j+ d12)
Pq = exp(IJ + OzQ)

lu
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Figure 6.35 Lognormal prior density and posterior
density for p.

As a second example, consider the logistic-normal
prior distribution having the same 50th and 95th
percentiles as the above lognormal prior. These
percentiles are 0.01126 and 0.1126. To find the
parameters of the underlying normal distribution, set
Y = InDY(1 - p)]. By the properties of the logistic-
normal distribution given in Appendix A.7.9, the 50th
and 95th percentiles of Y are

yo.50 = In[O.01 126/(1 - 0.01 126)] = -4.475
yK. = In[O.1 126/(1 - 0.1126)] = -2.064.

Because Yhas a normal(g, d) distribution, it follows
that

where the subscript q denotes the qth quantile, and
z is the qth quantile of the standard normal distribu-
tion.

Solving the first equation yields o= 1.3997. Substi-
tution of this into the second equation yields i =

-4.4862.

The percentiles are not needed yet, but the third
equation gives the median, p50 = exp(p4 = 0.01126,
and the 95th percentile, po.; = exp(p + 1.645o) =
0.1126. (The relation of these two percentiles can
also be derived from the fact that the error factor
equals 10.)

The prior Pr(p> 1) is 6.75E-4, a very small number.
In the calculations of this section, the lognormal
distribution is truncated at 1.0. That is, integrals are
renormalized to make the integral of the density from
O to 1 equal to exactly 1.0. If random sampling is
performed, any sampled values that are greater than
1 are discarded.

The prior and posterior densities of p are shown in
Figure 6.35. The densities were calculated using
software for numerical integration.

t'=-4.475
p+ 1.6450= -2.064

so o= 1.466.

Monte Carlo simulation shows that the truncated-
lognormal and logistic-normal prior densities are
virtually the same, with means, medians, 5th and
95th percentiles agreeing to two significant digits. As
a consequence, the posterior distributions from the
two priors are also nearly the same, although the
means and percentiles may differ slightly in the
second significant digit.

Numerical integration was used, but BUGS could
have been used. As an illustration, the script for
using BUGS is given in Figure 6.36.

This script assigns a logistic-normal prior distribution
to p. If a lognormal pror is used instead, BUGS
retums an error message during the simulation,
presumably because It has generated a value of p
greater than 1. The script assigns Y a normal distri-
bution with mean -4.475. The second parameter is
1/o

2 , because that is how BUGS parameterizes a
normal distribution. The entered value, 0.4653,
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equals 1/1.4662. The script then gives X a bino-
mial(8, p) distribution. Finally, the line beginning t list"
contains the data, the single observed value 1 in this
example. BUGS also wants an initial value for p, but
it is willing to generate it randomly.

model
l

y - dnorm(-4.475, 0.4653)
p <- exp(y)/( I + exp(y))
x - dbin(p, 8)

I
list(x = 1)

Figure 6.36 Script for analyzing Example 6.7 with
BUGS.

large because the earlier events are not considered fully
relevant to the present.

With such waiting-time data, the likelihood is propor-
tional to

Therefore, except for the normalizing constant the
likelihood is the same as for binomial data. Therefore,
it works out that Bayesian analysis with an informative
prior is exactly the same whether the data are regarded
as coming from a random count of x failures in a fixed
number of demands, n, or a random number of de-
mands, n, for a fixed number of failures, x. The poste-
rior distributions are identical.

6.3.3 Model Validation
For the present example, the difference between the
lognormal and logistic-normal priors is very small,
having no effect on the posterior. The difference
between the two priors can be important if the probabil-
ity of failure is larger and/or the uncertainty is larger.
That can be the case with some human errors, with
hardware failures in unusually stressful situations, and
with recovery from failure if recovery is modeled as an
event separate from the original failure. For example,
the NUREG 1150 PRA for Surry (Bertucio and Julius
1990) uses the lognormal distribution for most failure
probabilities. However, some failure probabilities are
large, considerably larger than 3E-2. In nearly all of
those cases, the PRA does not use a lognormal distribu-
tion. Instead, the maximum entropy distribution is the
PRA's distribution of choice. Other possible distribu-
tions, which were not widely known in the PRA com-
munity in 1990, would be the constrained noninforma-
tive distribution or a logistic-normal distribution.

6.3.2.6 Estimation with Fixed Number of Failures
and Random Number of Demands

Sometimes it is useful to consider a random number of
demands, a waiting time, to achieve a fixed number of
failures x. For example, if the failure probability p is
believed to change over time, only the most recent
history may represent current behavior. In such a
situation, one might decide to use only the most recent
few failures, such as x = 3, and to treat the correspond-
ing number of demands n as random. Here n is the
number of demands counted backwards from the
present to the xth failure in the past. Earlier failures and
demands could be used to construct a prior distribution,
but the dispersion of the prior distribution should be set

All the methods in this section are analogues of meth-
ods considered for failure rates, but the details are
somewhat different. Some repetition is inevitable, but
the examples in this section are chosen to complement
the examples of Section 6.2.3, not to duplicate them.
For a more complete appreciation of the model valida-
tion techniques, both this section and Section 6.2.3
should be read.

The comments at the start of Section 6.2.3 apply
equally to this section, and must not be ignored. In
particular, an analyst who estimates parameters should
check the assumptions of the model. However, this
section contains more than will be needed on any one
analysis. The methods here are offered for possible
use, and the analyst should select the appropriate ones.

The first assumption of the binomial model, given in
Section 2.3.2, is that the probability of failure is the
same on any demand. This assumption will be exam-
ined against two possible alternative assumptions: (1)
different subsets of the data have different values of p,
but in no special order; and (2) a time trend exists. The
second assumption of the binomial model is that the
outcome on one demand is statistically independent of
the outcome on a different demand. This will be
examined against the alternatives of common-cause
failures and of clustering in time of the failures. Fi-
nally, the consistency of the prior distribution and the
data will be considered.

One need not worry about whether n is really constant.
If n is not constant, we may treat it as constant by
conditioning on n, as explained in Section 2.3.2.4.2.
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6.3.3.1 Poolability of Data Sources

The methods will be illustrated by data from diesel
generator failures to start, shown in Example 6.8.

Example 6.8 EDG failures to start on demand.

Emergency diesel generator (EDG) failures to
start on demand were recorded for three kinds of
demands: unplanned demands, the tests per-
formed once per operating cycle (approximately
every 18 months), and the monthly tests. The
counts are given below.

Type of Failures to Number of
demand start demands

Unplanned 2 181

Cyclic test 17 1364

Monthly test 56 15000

Pooled (7Y16545)

Ulanned (21181)
Cy*c (1711364)

, .,, 11,111 ,,,, 1111,111,1, ., 1....

0000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
p ( isudes1adr4 C

Figure 6.37 MLEs and 90% confidence intervals for
p, for three types of demand and for the pooled data.

Figure 6.21, which is the corresponding plot in Section
6.2.3.1.1, has the cells (plants, in that example) ar-

ranged in order of decreasing A . Figure 6.37 does not
order the cells by decreasing fi, because the number of
cells is small, only three, and because the cells already
have a natural order. The analyst must decide what
order makes the most sense and is easiest for the user to
interpret.

The interval for the pooled data is also shown, not
because the data justify pooling, but simply as a refer-
ence for comparison. A dotted reference line is drawn
through the point estimate based on the pooled data. If
only a few data subsets need to be compared, as in
Figure 6.37, these embellishments are unnecessary.
With many subsets, however, the eye tends to get lost
without the reference line. The reference line has the
added advantage of focusing the eye on the confidence
intervals rather than the point estimates.

Table C.1 of Grant et al. (1996) gives the data for the
first two rows, at plants reporting under Regulatory
Guide RG-1.108 during 1987-1993. The failures
were those reported in LERs. The number of failures
on monthly tests at those plants comes from the
unpublished database used for that report, and the
number of monthly demands was estimated in a very
crude way for use in this example.

6.33.1.1 Graphical Technique

To explore the relations between subsets of the data,
mark the subsets on one axis. For each of these subsets
of the data, plot an estimate of p and a confidence
interval for p against the other axis. Patterns such as
trends, outliers, or large scatter are then visible.

In Example 6.8, the subsets are types of demand.
The data set from each demand type is analyzed
separately, and the graph shows an estimate and a
confidence interval for each year, plotted side by
side. This is shown in Figure 6.37. The plot was
produced with a graphics package, although a hand-
drawn plot would be adequate to show the results.

The plot shows that the unplanned demands and the
cyclic tests appear to have similar values of p, but
the monthly tests appear to have a lower value.
Several reasons for the difference could be conjec-
tured: the monthly tests may be less stressful, the
failures may not all be reported in LERs, or the
estimated number of demands may be badly incor-
rect.

The graph is only a picture. Pictures like these are
useful, but cannot always be used in an easy way to
draw conclusions about differences between data
subsets. The warnings given in Section 6.2.3.1.1
deserve repetition:

* If many confidence intervals are plotted, all
based on data with the same p, a few will be far
from the others because of randomness alone.
An outlying interval does not prove that the ps
are unequal.

* This same statement is true if other intervals are
used, such as Bayes credible intervals based on
the noninformative prior. The issue is the ran-
dom variability of data, not the kind of interval
constructed.

* If there are few intervals, on the other hand,
intervals that just barely overlap can give strong
evidence for a difference in the ps.
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To quantify the strength of the evidence seen in the
picture, a formal statistical procedure is given in the
next subsection. The picture gives a preview, and helps
in the interpretation of the formal statistical quantifica
tion. In the present example, if the statistical test finds
a statistically significant difference between data
subsets, it is natural to then ask what kind of difference
exists. The picture shows thatp seems to be similar for
the unplanned demands and for the cyclic tests, but
smaller for the monthly tests. In this way, the picture
provides insight, even though it does not provide a
quantitative statistical test.

633.1.2 Statistical Tests

Simple Contingency Tables (2 x J). The natural
format for the data is a "contingency table." An intro-
ductory reference to this subject is Everitt (1992), and
many general statistics texts also have a chapter on the
topic. In a two-way table, two attributes of the events
are used to define rows and columns, and the numbers
in the table are counts. In the present example, two
attributes of any event are the type of demand and
whether it is a failure or success. One way to build a
contingency table is to let the first row show system
failures and the second row system successes. Then let
the columns correspond to the demand types. (Of
course, the roles of rows and columns can be reversed
if that fits better on the sheet of paper.) The table
entries are the counts of the events for each cell, shown
in Table 6.12 for Example 6.8.

Table 6.12 Contingency table for Example 6.8.

row i is denoted n. and the total count in column j is
denoted n+j. The grand total is denoted n+.

For example, Table 6.12 has n1 ,3 = 56 and n2t =179.
It has n2. = 16470 and n,2 = 1364. The grand total,
nay equals 16545 in the example.

Let the null hypothesis be

Ho: p is the same for all the data subsets.

The alternative hypothesis is

HI: p is not the same for all the data subsets.

In the example, the data subsets are the three demand
types. The analyst must investigate whether Ho is true.
The method used is to see what kind of data would be
expected when p really is the same, and then to see how
much the observed counts differ from the expected. If
the differences are small, the counts are consistent with
the hypothesis H.. If, instead, the differences are large,
the counts show strong evidence against Ho.

If H. is true, that is, if p is really the same for all the
demand types, the natural estimate of p is

A = no+ / no -

Then for column j, one would have expected n+p J
failures on average. This reasoning leads to the formula
for the expected count in cell ij:

e. = ngn I n,

In Table 6.12, for unplanned demands one would
have expected 181x(75116545) = 0.82 failures on
average, for cyclic tests 1364x(75/16545) = 6.19
failures, and so forth.

The difference between the observed count and the
expected count for any cell is nj - ej. There are many
cells, and therefore many ways of combining the
differences to yield an overall number. One useful way
is to construct

X2 = E{2 (nu - e0)21e0.

X2 is called the chi-squared statistic, or sometimes the
Pearson chi-squared statistic. Note, X2 as defined here
is slightly different from the chi-squared statistic for
constant event rate in Section 6.2.3.1.2. In that section,
the cells had one index, whereas in this section, the cells
have two indices, and the expected counts are calcu-

|| Unplanned I Cyclic I Monthly I Total

Failure 2 17 56 75

Success 179 1 16470

Total I 181 1364 I 1500l 16545

The essence of this table is a 2 x 3 table, because the
basic data counts occupy two rows and three columns.

The row totals, column totals, and grand total are shown
in the right and bottom margins. A general, two-way
contingency table has Irows and Jcolumns. (Although
this discussion considers only 2 x J tables, it does no
harm to give the general formulas, keeping in mind that
the examples of this section have I = 2.) The count in
the ith row and jth column is denoted no, for i any
numberfrom I tolandjfrom 1 toJ. Thetotalcountin
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lated differently. Other than that, the statistics are the
same. Table 6.13 expands Table 6.12 to show the
quantities needed to calculate X2. The observed counts
and the expected counts have the same totals, except for
roundoff.

Table 6.13 Counts, expected counts, and
contributions to XI, for Example 6.8.

lIUnplanned I Cyclic I Monthly Ttl

Failure 2 17 56 75
0.82 6.19 68.00
1.70 18.92 2.12

Success ' 179 1347 14944 16470
180.18 1357.80 14932

l 0.01 0.09 0.01

| Total || 1811 13641 5000|1

For example, there were 2 failures on unplanned
demands. The expected number of failures on un-
planned demands, if Ho is true, is 181 x75/16545 =
0.82. And the contribution of that cell to x2 is
(2 - 0.82)2/0.82 = 1.70.

When Ho is true and the total count is large, the distri-
bution ofX2 has adistribution that is approximately chi-
squared with (I-l)x(J-1) degrees of freedom. In Table
6.12, the number of degrees of freedom is (2- 1)x(3- 1)
= 2. IfX2 is large compared to the chi-squared distribu-
tion, the evidence is strong that Ho is false; the larger
X2, the stronger the evidence.

Interpretation of Test Results. Based on any 2x3
contingency table, such as Table 6.12, suppose that X2

were 6.4. A table of the chi-squared distribution shows
that 5.991 is the 95th percentile of the chi-squared
distribution with 2 degrees of freedom, and 7.378 is the
97.5th percentile. After comparing X2 to these values,
an analyst would conclude that the evidence is strong
against Ho, but not overwhelming. Quantitatively, the
analyst would "reject Ho at the 5% significance level,
but not at the 2.5% significance level." This is some-
times phrased as "the p-value is between 0.05 and
0.025." See the bulleted list in Section 6.2.3.1.2, in the
interpretation following Table 6.6, for other phrases
that are sometimes used.

If instead X2 were 1.5, it would lie between the 50th and
the 60th percentiles of the chi-squared distribution, and
therefore would be in the range of values that would be
expected under Ho. The analyst could say "the ob-
served counts are consistent with the hypothesis Ho," or

"Ho cannot be rejected," or "the evidence against H. is
very weak." The analyst would not conclude that H. is
true, because it probably is not exactly true to the tenth
decimal place, but would conclude that it cannot be
rejected by the data.

In fact, in Example 6.8 X2 equals 22.8, as found by
totaling the six contributions in Table 6.13. This
number is far beyond the 99.5th percentile of the chi-
squared distribution, so the evidence is overwhelm-
ing against Ho. Such an analysis contributed to the
decision of Grant et al. (1 999b) not to consider
monthly tests in their report.

This example was chosen to illustrate that subsets of the
data can correspond not only to different locations or
different hardware (for example, different plants or
systems), but also to different conditions, in this case
different types of demands. In reality, the data analyst
should consider various kinds of subsets; in this exam-
ple, with data coming from many plants, the analyst
should consider possible between-plant differences.
The plots and chi-squared tests are exactly the same as
given above.

This brings up a difficulty with the present example that
has been carefully hidden until now. The hypothesis Ho
is that all the subsets of the data have the same p. A
hidden hypothesis, never even proposed for testing, is
that within each data subset, every demand has the same
p. In fact, this turns out not to be the case. Based on
only the unplanned demands and cyclic tests, Grant et
al. (1999b) report that the difference between plants is
statistically significant - the evidence is strong that p
differs from plant to plant. This means that the above
analysis must be refined to account for possible differ-
ences between plants. Such variation is discussed in
Chapter 8 of this handbook.

Thus, the data set has two sources of variation, differ-
ences between demand types and also differences
between plants. In such a situation, consideration of
only one variable at a time can throw off the results if
the data set is "unbalanced," for example, if the worst
few plants also happen to have the most unplanned
demands and the fewest monthly demands. If such
between-plant differences are contaminating the EDG
data in Example 6.8, the observed difference might not
reflect anything about the nature of the demands, but
only that the plants with EDG problems were
underrepresented on the monthly tests. Example 6.9
shows hypothetical data under such a scenario.

If only the good plants are considered, or if only the
bad plants are considered, the data of Example 6.9
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show no difference between unplanned demands
and tests. The estimated p is the same for un-
planned demands and for tests, 0.2 from the bad
plants' data and 0.02 from the good plants' data.
However, if the data from good plants and bad plants
are combined, the unplanned demands appear to
have a much higher failure probability than do the
tests, 0.07 versus 0.03. This erroneous conclusion
is a result of ignoring differences in the data, the
existence of two kinds of plants, when the data are
unbalanced because the bad plants have a much
higher percentage of unplanned demands. Such a
situation is known as Simpson's paradox.

Example 6.9 Hypothetical unbalanced data.

Suppose that the industry consists of Mbad" plants
and "good' plants. The bad plants have a
relatively high probability of failure to start, and
also have relatively many unplanned demands.
Suppose that the tests perfectly mimic unplanned
demands, so that at either kind of plant p is the
same on an unplanned demand and on a test.
Data from such an industry might be given in the
table below. The tables entries show failures/
demands.

l iZ t Unplanned I Tests

Bad plants 4/20 = 0.2 4/20 = 0.2

Good plants | 1/50 = 0.02 8/400 = 0.02

Totals | 5170 = 0.07 | 1420 = 0.03

about 1/3 as large on monthly tests as on other
demands, at least according to the reported data.
Therefore, the difference is substantial in engineer-
ing terms, and the engineering portion of the data
analysis can investigate reasons for the difference.

Required Sample Size. The above approach is valid
if the values of n0are "large." If they are small, X2 has
a discrete distribution, and so cannot have a chi-squared
distribution. As a rather extreme example, if n., the
total number of demands, were equal to four in the
framework of Example 6.8. there would only be a few
ways that the four demands (and the number of failures,
at least zero and at most four) could be arranged among
the three demand types. Therefore X2 could only take
a few possible values.

Therefore, the user must ask how large a count is
necessary for the chi-squared approximation to be
adequate. An overly conservative rule is that all the
expected cell counts, e., be 5.0 or larger. Despite its
conservatism, this rule is still widely used, and cited in
the outputs of some current statistics packages. For a
2xJ table, Everitt (1992, Sec. 3.3), citing work by
Lewontin and Felsenstein (1965), states that the chi-
squared approximation is adequate if all the values of e,
are 1.0 or greater, and that in "the majority of cases" it
is sufficient for the e. values to be 0.5 or greater. For a
2x2 table, however, it is generally best not to use the
chi-squared approximation at all, but to use the p-value
from "Fisher's exact two-sided test," discussed below.

If the expected cell counts are so small that the chi-
squared approximation appears untrustworthy, the
analyst has two choices: (a) Pool some columns,
thereby combining cells and increasing the expected
cell counts. For example, in an investigation of differ-
ences between years, with few failures, it might be
necessary to combine adjacent years so that the ex-
pected number of failures in each time-bin is at least
05; or (b) Some statistical software packages can
compute the "exact distribution" of X2 in some cases
(typically for small tables). Conditional on the n,+
values and n+, values, this exact distribution is the finite
set of values that X2 can possibly take, together with
their associated probabilities. If the analyst is willing to
base the decision on this conditional distribution, the
exact distribution can be used. The commercial pack-
age StatXact performs such calculations using modem,
fast algorithms, even for large tables, subject only to the
memory available in the machine. In the special case of
a 2x2 contingency table, many software packages
compute this p-value, calling it the p-value from
"Fisher's exact two-sided test." In general, the p-value
from Fisher's exact test is preferable to the p-value

In fact, this scenario cannot be greatly influencing
the data in Example 6.8, because most of the de-
mands are periodic. Therefore, every plant must
have approximately the same fraction of monthly
tests and of cyclic tests. In conclusion, although
between-plant variation must be considered, it is
hard to imagine that it affects the outcome in Exam-
ple 6.8.

As mentioned in Section 6.2.3.1.2, a full data analysis
must not stop with the calculation of a p-value. In the
present example, with a very large number of demands,
it may be that the statistically significant difference is
not very important from an engineering viewpoint. In
other words, a large data set can detect differences in
the second decimal place - differences that are not
worth worrying about in practice.

This concern is addressed in the example by Figure
6.37, which shows that the probability of FTS is
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from the chi-squared approximation, and should be
used whenever the software produces it. This, and
other considerations for a 2x2 table, are discussed by
Everitt (1992) and Atwood (1994).

In Table 6.13, the smallest expected count is ee, =
0.82. All the other expected counts are larger than
1.0. This indicates that the sample size is large
enough.

6.3.3.2 No Time Trend

This section uses the unplanned HPCI demands from
Example 6.5, with the failures indicated. To make a
data set with a moderate number of failures, all types of
failures are counted together, including failure to start,
failure to run, failure of the injection valve to reopen
after operating successfully earlier in the mission, and
unavailability because of maintenance. For the exam-
ple, no credit is taken for failures that were recovered.
The data are given as Example 6.10.

Table 6.14 HPCI failures on demand, by year.

I Calendar year IFailuresI Demands

1987 4 16

1988 2 10

1989 1 7

1990 3 13

1991 2 9
1992 0 6

1993 0 2

i
Ii

I
i
i

I

I
A

i

Sco

=
S8

Example 6.10 Dates of HPCI failures and
unplanned demands, 1987-1993.

e HPCI demands of Example 6.5 are listed here
with an asterisk marking demands on which some
kind of failure occurred. The demands dates are
given in columns, in format MMWDDIYY.
1/05/8r 08/03/8r 03105189 08/1&190' 08/25/91
1/07/87 08/16/87 03/25/89 08/19/90 09/11/91
1/26/87 08/29/87 08/25/89 09/02190 12117/91

18/87 01/10/88 09/03/89 09/27/90 02/02/92
02124/87 04/30/88 1 1/05/89' 10/12/90 06/25/92
03/11/8r 05/288 11/25/89 10/17/90 08/27/92
04/0387 08/05/88 12/20/89 11/25/90 09/30/92
04116/87 08588 01/12/90 01/18191* 10/15192
04/22/87 08/25/88 01/28/90 01/25/91 11/18/92
07/23/87 09/04/88' 0319/90 02/27/91 04/20/93
07/26/87 11/01/88 03/19/90 04/2391 07/30193
07/30/87 11/15/88' 05/20/90 07/18191'
08/03t8r 12117/88 07/27/90 07/31/91

87 88 89 90 91 92 93
Year GCM02OM21

Figure 6.38 Point and interval estimates of p, each
based on one year's data.

A plot that does not require a choice of how to con-
struct bins is given in Figure 6.39, the analogue of
Figure 6.23. It can be constructed when the demands
can be ordered sequentially, as is the case for Example
6. 10. In this plot, the cumulative number of failures is
plotted against the cumulative number of demands. To
help the eye judge curvature, a straight line is drawn,
connecting the origin with the dot at the upper right.

12

10
63.3.2.1 Graphical Techniques

Just as elsewhere in this chapter, the time axis can be
divided into bins, and the data can be analyzed sepa-
rately for each bin and compared graphically.

For Example 6.10, defining the bins to be years
leads to Table 6.14. This leads to a plot similar to
Figures 6.21 and 6.22, shown in Figure 6.38. The
plot with the example data shows no evidence of a
trend.

a

I1
a

4 -fl-b

I .m..I..m. *,,,,I ,,,.U....,.,,. I

2

0O
0 5 10 15 20 25 30 35 40 45 50 55 O 65

Cumulaftv demands Ocm02=22
Figure 6.39 Curmulative number of failures versus
cumulative number of demands.

6-48



Parameter Estimation and Model Validation

The slope of any part of the graph is the vertical dis-
tance divided by the horizontal distance, Ay/Ax. In the
present figure the horizontal distance is the number of
demands that have occurred, and the vertical distance is
the corresponding number of failures. Therefore,

slope = (number of failures)1(number of demands),

so the slope is a visual estimator of p. A roughly
constant slope, that is, a roughly straight line, indicates
a constant p. A changing slope indicates changes in p.

In Figure 6.39, the slope is relatively constant,
indicating that p does not seem to change with time.
This agrees with Figure 6.38. It is not clear whether
the slight departure from the diagonal line in the right
half of the figure is more than can be attributed to
random variation. Such questions must be ad-
dressed by statistical tests, given below.

The details of the diagonal line probably do not matter.
The line shown is the maximum likelihood estimate of
the expected height of the plot at any horizontal point,
assuming constant p. Other lines, slightly different,
could also be justified.

633.2.2 Statistical Tests for a Trend inp

In this section, the null hypothesis remains

Ho: p is the same for all the data subsets.

but the alternative is now

HI: p is either increasing or decreasing over time.

The Chi-Squared Test This is the same test as given
in Section 6.3.3.1.2, except now the data subsets are
years or similar bins of time.

The data of Table 6.14 can be written as a 2x7
contingency table. The smallest expected cell count
corresponds to failures in 1993, with the expected
count = 2x12/63 = 0.4. This is too small to justify
calculating a p-value from the chi-squared distribu-
tion. The problem can be remedied by pooling the
two adjacent years with the smallest number of
demands, 1992 and 1993. (Note, the decision of
which subsets to pool is based on the numbers of
demands only, not on whether or not those demands
resulted in failures. Pooling based on demand
counts is legitimate. Pooling based on the failure
counts is not.)

When this 2 x 6 contingency is analyzed by the chi-
squared test, the p-value is 0.77, indicating no

evidence at all of differences between years. This is
no surprise.

The Wilcoxon-Mann-Whitney TesL This test is
similar in spirit to the Laplace test for a trend in Al. The
null hypothesis is that p is the same for all demands.
Suppose that the individual demands are in a known
sequence. Against the alternative hypothesis that the
failures tend to occur more at one end of the sequence
- that is, p is either an increasing or a decreasing
function of the sequence number - use the Wilcoxon-
Mann-Whitney test, described in texts that cover
nonparametric statistics. Two good sources of standard
nonparametric methods are Conover (1999), and
Hollander and Wolfe (1999). Hollander and Wolfe call
this test the Wilcoxon rank sum test.

The test is based on the sum of the ranks of the failures.
For example, in the sequence of failures and successes

failure, success, failure, failure, success,

the three failures have ranks 1, 3, and 4, and the sum of
their ranks is 8. Let Wdenote the sum of the ranks of x
failures in n trials. If x and n - x are both large and if
the probability of a failure is the same for the entire
sequence, W is approximately normal with mean Hw =
x(n+1)12 and variance o w=x(n-x)(n+l)/12. IfZ= (W
- p,)/oW is in either tail of the distribution, the null
hypothesis should be rejected. If x or n - x is small,
statistics books give tables, or statistical computer
packages calculate the exact tail probability.

The data of Example 6.10 show 12 failures in 63
demands. The first failure was on the first demand
(01/05/87), so that failure has rank 1. The next was
on the sixth demand, so that failure has rank 6. Two
demands occurred on 03/19/90, the 36th and 37th
demands. One of the two demands resulted in
failure, so that failure was assigned rank 36.5, as is
usual in case of ties. The sum of the ranks of the
failures is 321.5, and Zcan be calculated to equal
-1.09. This is the 13.8th percentile of the normal
distribution. Because Zis not in either tail, it is not
rejected.

63.33 Independence of Outcomes

The second assumption for binomial data is that the
outcomes of different demands be independent - a
success or failure on one demand does not influence the
probability of failure on a subsequent demand.

Outcomes can be dependent in many ways, and some of
them must be addressed by careful thinking rather than
by statistical data analysis. The analyst or the study
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team should consider possible common-cause mecha-
nisms, and examine the data to see if many common-
cause failures occurred. Ifcommon-cause failures form
a noticeable fraction of all the failures, the analyst
should probably divide the independent failures and the
common-cause failures into separate data sets, and
separately estimate the probabilities of each kind of
failure.

The rest of this section is less important on the first
reading than other sections. Some readers may wish to
skip directly to Section 6.3.3.4.

If demands occur in sequence, it is natural to consider
serial dependence, in which the occurrence of a failure
on one demand influences the probability of a failure on
the next demand. Some people believe that hits in
baseball occur this way, that a slump or streak can
persist because of a batter's attitude, which is influ-
enced by how successful he has been recently. In the
context of hardware failures, suppose that failures are
sometimes diagnosed incorrectly, and therefore repaired
incorrectly. Immediately after any failure, the probabil-
ity of failure on the next demand is higher, because the
first failure cause may not have been truly corrected. In
such a case, the failures would tend to cluster, rather
than being uniformly scattered among the successes. A
cumulative plot, such as that in Figure 6.39, can be
inspected for such clusters.

large p-value shows that the data are very consistent
with the hypothesis of independence of successive
outcomes. Because the data come from the entire
industry, independence is entirely reasonable.

Table 6.15 Contingency table for successive
outcomes In Example 8.10.

IZIIEIIE=F~
y=F 1 10 I11

y=S 1 1 40 51

|Total Ir12 | _50_ ||62

6.33.4 Consistency of Data and Prior

If the prior distribution has mean Ep), but the
observed data show xWn very different from the prior
mean, the analyst must ask if the data and the prior are
inconsistent, or if the prior distribution was misin-
formed. The investigation is similar to that in Section
6.2.3.5.

Suppose first that xln is in the right tail of the prior
distribution. The relevant quantity is the prior probabil-
ity of observing x or fewer events. This is

If the question of independence is restricted to succes-
sive outcomes - outcome i- I versus outcome i - the
data can be analyzed by a 2x2 contingency table. Let
y, be the outcome on demand i, either success or failure.
Let x, be the outcome on demand i - 1. The possible
values of successive outcomes (x;, ye) are (S, S), (S, F),
(F, S). and (F. F).

To put this in more familiar language, let p denote the
probability of a failure, and consider two kinds of
demands, those when the previous outcome (x) was a
failure and those when the previous outcome was a
success. The null hypothesis is

Ho p is the same on both kinds of demands.

Perform the usual chi-squared test of Ho based on a
contingency table.

Example 6.10 results in the contingency table shown
in Table 6.15. Although the chi-squared approx-
imation should be acceptable, it is preferable to use
Fisher's exact test for a 2x2 table. The p-value
reported by SAS for Fisher's exact test is 0.67. This

Pr(X 2 x) =I Pr(X 2 xlp)fp,, (p)dp (6.17)

where

Pr(X xj ) = YE) P(1)- (6.18)

If the prior distribution is beta(a, A), it can be shown
that Equation 6.17 equals

Pr(X 2 x)

n Ant r(a+k) r(fi+n-k) r(a+fl)

kIx k) r(a) r(/3) r(a +fi+n)

where r(s) is the gamma function, a generalization of
the factorial function as described in Appendix A.7.6.
The name of this distribution is beta-binomial. This
probability can be evaluated with the aid of software.
If the prior probability is any distribution other than a
beta distribution, Equation 6.17 does not have a direct
analytical expression.
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Just as in Sec. 6.2.3.5, one method of approximating the
integral in Equation 6.17 is by Monte Carlo sampling.
Generate a large number of values of p from the prior
distribution. For each value of p, let y be the value of
Equation 6.18, which can be calculated directly. The
average of the y values is an approximation of the
integral in Equation 6.17. Another method of approxi-
mating the Equation 6.17 is by numerical integration.

If the probability given by Equation 6.17 is small, the
observed data are not consistent with the prior belief-
the prior belief mistakenly expectedp to be smaller than
it apparently is.

failed or not at the end of the standby period. From
Equation 2.3, the probability that the system is failed at
time t is

P = I - e" . (6.19)

Suppose that x failures are observed on n demands. For
any one of the failures, denote the corresponding
standby time by t,, i = 1, ..., x. For any one of the
successes, denote the corresponding standby time by si,
j = 1, ..., n - x. All these numbers are observable in
principle. Therefore, the likelihood is proportional to

Similarly, if x/n is in the left tail of the prior distribution
of the prior distribution, the relevant quantity is the
prior Pr( X s x ). It is the analogue of Equation 6.17
with the limits of the summation in Equation 6.18 going
from 0 to x. If that probability is small, the prior
distribution mistakenly expected p to be larger than it
apparently is.

Again consider Example 6.7, one AFW failure to start
in eight demands, and consider the industry prior,
beta(4.2, 153. 1). One easy approach is Monte Carlo
simulation. Therefore, values of p were generated
from the beta distribution, using the technique
mentioned at the end of Section 6.3.2.5.3. That is,
yi was generated from a garnma(4.2, 1) distribution,
y2 was generated from a gamma(1 53.1, 1) distribu-
tion, and p was set to Yl/(Y, + Y2).

The industry-prior mean of p is 0.027, Because the
observed number of failures, one, is larger than the
prior expected number, 8x0.027 = 0.21, we ask
whether such a large failure count is consistent with
the prior. The probability in question is Pr(X 2 1).
For each randomly generated p, Pr(X 2 1 | p) was
found, equal to 1 - Pr(X= ° l p) = 1 - (1 - p)0 . The
average of these probabilities, calculated for 100,000
random values of p, was 0.192, with a standard error
of 0.0003. This means that the true probability Is
0.192, with negligible random error. Because this
probability is not small, the data appear consistent
with the prior distribution.

J=I it1

(6.20)

This likelihood will be treated in three distinct ways
below. First, a simple special case will be considered.
Second, an approximation of the likelihood will be
developed and used. Finally, a way to use the exact
likelihood in Bayesian analysis will be given.

First, consider a simple special case, when all the stand-
by times are equal, say, to some number t. This can
happen if all the demands are test demands at equally
spaced intervals. In this case, the probability of failure
on demand is the same for each demand, the quantity p
given by Equation 6.19. Therefore, the number of
failures in n demands is binomial(n, p). The analysis
methods of Section 6.3 can all be used - Bayesian or
frequentist estimation ofp and all the methods of model
validation. At the very end of the analysis, the conclu-
sions in terms ofp should be translated into conclusions
in terms of A, by solving Equation 6.19 for

,I= -In(1 - p)lt .

This equation for A can be approximated as

1 p/t

if p is small (say, < 0. 1).

6.4 Failure to Change State:
Standby Failure

As explained in Sec. 2.3.3, this type of failure is mod-
eled as a failure condition that occurs at an unknown
time between the most recent previous inspection, test,
or demand and the present one.

Each demand corresponds to a standby time. The only
thing that can be observed is whether the system is

This last equation shows that the MIEof 14 is approxi-
mated by

k/lt=xInt .

Here x is the number of failures and nt is the total
standby time. This total standby time is approximately
the total calendar time, so a simple estimate of At is the
number of failures divided by the total calendar time.
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The above simple approach assumes that all the standby
times are equal. If the standby times are approximately
equal, or nearly all equal, it is very appealing to use the
above technique, calling it an adequate approximation.
If, instead, the standby times differ greatly, one of the
two approaches given below can be used. The first uses
an approximation of the likelihood, and the second is an
exact Bayesian method.

An approximation of the exact likelihood given in
Equation 6.20 can be developed as follows. It is well
known that

1 - exp(-It,) - At.

This is the first order Taylor-series approximation, and
is valid when At, is small. The error is on the order of
(kt,) 2. A second-order approximation is less well
known, but it is not hard to show that

1- exp(-At1) Atexp(-At/2).

That is, the two quantities on the left and right of the z
have the same second order Taylor expansions, and
they differ only by a term of order (A). Therefore, the
likelihood in Equation 6.20 is approximately equal to

ex4X ,i ( i) exp(4- -U /2).

The graphical methods for model validation from
Section 6.2 remain valid, because they give qualitative
indications and do not require a rigorous justification.
The above argument also suggests that the chi-squared
test of poolability in Section 6.2 can be used with the
present data, because the chi-squared test is only an
approximation in any case. However, no simulations
to confirm this have been carried out for this handbook.

Finally, we give a different approach, an exact Bayesian
method that can be used if the standby times have been
recorded, based on Equation 6.20. Figure 6.40 gives a
portion of a script for analyzing this type of data with
BUGS, based on the exact likelihood. (See Figures
6.16 and 6.36 for similar scripts in other situations.)

model
{ for (i in l:n) I

p[i] <- I - exp(-lambda*t[ii)
x[i] - dbern(p[iJ)

)
lambda - dgamma(0.5, 0.00001)

I

Figure 6.40 Script for analyzing standby failure data
exactly.

This is proportional to

e--AZ

where

Compare this approximation of the likelihood with
Equation 6.1, and see that the approximate likelihood
here is proportional to the likelihood of x Poisson
events in time t, where t equals the total standby time
for the successes plus half the standby time for the
failures.

In this script, p, is defined as I - exp(-At). The
random variable X, is assigned a Bernoulli(,p) distribu-
tion. This means thatX, equals I with probability p, and
equals 0 with probability I p Pi. It is the same as a
binomial distribution with n = 1. Finally, A is assigned
a prior distribution. In Figure 6.40, the prior distribu-
tion is chosen to be close to the Jeffreys noninformative
prior for Poisson data, but any proper prior distribution
could be used. BUGS requires a proper distribution, so
the second parameter of the gamma distribution cannot
be exactly zero. An additional required portion of the
script, giving the data, is not shown in Figure 6.40.

6.5 Failures to Run during
Mission

Therefore, all the likelihood-based methods for Poisson
data are approximately valid, treating the data as
showing x failures in time t. The likelihood-based
methods consist of maximum-likelihood estimation and
all the Bayesian techniques.

6.5.1 Estimates and Tests

This type of data can be analyzed using almost exactly
the same tools as for event rates in Section 6.2. Certain
tools carry over exactly, and others are approximately
correct
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6.5.1.1 Likelihood-Based Methods: MLEs and
Bayesian Methods

Suppose that n systems are run for their missions.
(Equivalently, we might assume that a system is run for
n missions.) Suppose that x of the runs result in failure,
at times t,, ..., t,. The remaining n - x runs are com-
pleted successfully, and the systems are turned off at
times so, ..., S., Observe the notation: t for a failure
time and s for a completed mission time. The likeli-
hood is the product of the densities of times to failure,
for the systems that fail, times the probability of no
failure, for the systems that did not fail:

I n-X

fl f(t)fl Pr (no failure by s).
i=1 J.=

(As elsewhere, the capital pi denotes a product, analo-
gous to a capital sigma for a sum.) Under the model
introduced in Section 2.4, the failure rate is assumed to
be constant, A, the same for all the systems. Therefore,
the time to failure has an exponential distribution. As
stated in Appendix A.7A, the density of an exponen-
tial(A) distribution is

.At) = Ae *

and the cumulative distribution function (c.d.f.) is

FQt) = I - c--*.

multiple of the likelihood is the same in Section 6.2 and
here. In particular, the maximum likelihood estimate of
A is xlt. The gamma distributions form the family of
conjugate priors, and any Bayesian analysis is carried
out the same way for the data here, and the data in
Section 6.2.

The subtle difference is that Et, is randomly generated
here, so t is randomly generated (although if most of the
systems do not fail during their missions, the random
portion of t is relatively small). Also, the likelihood
here is not a probability, but a combination of densities
and probabilities, explaining the missing normalizer in
the likelihood. These differences between this section
and Section 6.2 result in small differences in the confi-
dence intervals and the tests for poolability.

6.5.1.2 Confidence Intervals

Engelhardt (1995) recommends the following method
when all the mission times equal the same value, s. The
probability of a system failure before time s is

p = F(s) = I - exp(-As) . (6.21)

Based on x failures in n trials, find a confidence interval
for p, using the methods of Sec. 6.3. Translate this into
a confidence interval for A, using Equation 621

A CDf~ao5 = -In(1 - pw.0 )Is
A,.. 4 0.95 = -ln(1 - p.ns95)ls -

In particular, the probability of no failure by time s is
I - F(s). Substitution of these values into the general
expression for the likelihood results in

X -1

I[A exp(- Ati)rn exp(-As

= At exp[-i E ti + E so

= Al exp(- A)

where t is defined as Et, + Esj, the total running time.

Except for a normalizer that does not depend on A, this
is the Poisson probability of x failures in time t,

exp(-At)kAtFIx! .

Recall that Section 6.2 dealt with x failures in time t.
Therefore, any statistical analysis that requires only a

This method does not use all of the information in the
data, because it ignores the times of any failures, using
only the fact that there was a failure at some time before
the mission time s. However, if failures are few, the
loss of information is small.

Similarly, to perform tests when all the mission times
are the same, for example to test whether two data
subsets can be pooled, one can work with p, defined by
Equation 6.19, and use the tests given in Section 6.3.
The translation to A needs to be made only at the very
end of the analysis.

When the mission times are not all equal, no exact
confidence interval method exists. However, Bayesian
intervals can still be found, and are suggested.

6.5.13 Jeffreys Noninformative Prior

The Jeffreys prior can be worked out exactly, following
the process given in Appendix B.5.3. 1. If Ax(typical
mission time) is small (say, < 0.1), then the Jeffreys
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prior is approximately the same as in Section 6.2, an
improper distribution proportional to A"1.

6.5.1.4 Tests for Poolability

The above arguments suggest that it is adequate to
ignore the random element of t, and use the methods of
Sec. 6.2, when estimating A. For testing whether
subsets of the data can be pooled, the same arguments
suggest that the chi-squared test of Sec. 6.2 can be used.
The chi-squared distribution is only an asymptotic
approximation in any case, and can probably be used
even when t has a small amount of randomness, al-
though no simulations to confirm this have been carried
out for this handbook.

The rest of this section considers a diagnostic plot that
was not introduced earlier.

6.5.2 Hazard Function Plot

One plot that is especially useful for failures to run is
the hazard function plot. It is used to investigate wheth-
er A is constant during the entire mission. As explained
in Appendix A.4.4 for a nonrepairable system, At is
the approximate probability that the system will fail
during a time interval of length At, given that it has not
yet failed. The precise name for A is the hazard rate,
or hazard function, although it is often also called the
failure rate.

Suppose that the system must run for some mission
time, and the data value for that mission is either the
mission time, if the system runs to the end without
failing, or the failure time, if the system fails during the
mission. The outcome, failure or success, is also
recorded. The total data set consists of the data from a
number of missions.

Now consider the possibility that A is not constant.
Therefore, we write it as A(t). An estimate of A(t)At at
some time t is the number of systems that failed during
the interval (Q, t + At) divided by the number of systems
that had not yet failed by time t. This leads to the
following rather unsatisfactory estimate of A(Q). Divide
the mission time into small intervals, each of length At,
with the intervals so short that hardly any of them
contain more than one failure time. In an interval with
no recorded failures, estimate A(t) by 0. In an interval
(t, t + At) with one failure, estimate A(t)At by l/n,,
where n, is the number of systems that had not yet failed
by time t. Therefore, the estimate of A(t) there is
1I(n,At). For intervals with more than one failure, set
the numerator to the number of failures.

This estimate consists of a number of spikes, at times
when failures were observed. Because it is so un-
smooth, this estimate is not at all attractive. However,
it motivates a very simple estimate of the cumulative
hazard function, defined as

A (t) = J|A(u)du .

In this definition, the argument t of A is the upper limit
of integration. Here A and A are related in the same
way that a c.d.f. and a density are related. In particular,
A(t) is the derivative of A(t).

A natural and simple estimate of A(t) is a step function,
which is flat except at times when failures occurred. At
a time t when a failure occurred, the estimate of A
jumps by l/n,, where n, is defined, just as above, as the
number of systems that had not yet failed by time t. If
exactly simultaneous failures occur, for example
because of roundoff in reporting the failure times, the
estimate of A jumps by the number of failures divided
by nr This plot is due to Nelson (1982). The full name
of the plot is the cumulative hazard function plot.
This technique is illustrated with the following exam-
ple.

Example 6.11 EDG failure-to-run times.

Grant et al. (1999b) state that 23 failures to run
occurred during the EDG tests performed approxi-
mately once every 18 months. All these failures
were reported by plants subject to Regulatory
Guide RG1.108, and there were approximately
665 such tests performed at these plants during
the study period. These tests require the EDG to
run for 24 hours. Of the 23 failure reports, 19
reported the times to failure. The 19 reported
times are given below, in hours.

0.17 0.33 2.67 6.00 11.50
0.23 0.35 3.00 8.00 13.00
0.25 0.93 4.00 10.00 17.78
0.33 1.18 5.50 10.00

Grant et al. (1999b) assume that the lack of a re-
ported time is statistically independent of the time at
failure, so that the 19 reported times are representa-
tive of all 23 times.

There were approximately 665 such tests. There-
fore, the cumulative hazard plot jumps by 1/665 at
time 0.17 hours, by 1/664 at time 0.23 hours, and so
forth, until it jumps by 1/647 at time 17.78. It is
important that the duration of all the tests is known to
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be 24 hours. This fact guarantees that none of the
EDGs drop out early, so that after 18 failures 647
EDGs are still running. Actually, this is only approxi-
mate, because it ignores the four failures with unre-
ported times.

The jumps are almost the same height, because
1/665 equals 1/647 to two significant digits. There-
fore Grant et al. (1 999b) plot the cumulative number
of failures (a jump of 1 at each failure), instead of the
estimated cumulative hazard function. The two
graphs make the same visual impression, and the
cumulative failure plot was easier to explain in the
report. This plot is shown here, as Figure 6.41.

20

co

E
0

15

10

5

0 .. ' .......... 11
0 4 8 12 16 20 24

Failure time (hours) GC99029223

Figure 6.41 Plot of cumulative failure count, a close
approximation of plot of cumulative hazard function
when only a small fraction of the systems fail.

The cumulative hazard plot would differ only in that
the vertical scale would be different, and the jumps
would not be exactly the same size, though the
jumps would be almost the same size in this exam-
ple.

As explained in introductory calculus courses, when a
function is graphed as a curve, the derivative of the
function is the slope of the curve. Therefore, the slope
of a cumulative hazard plot near time t estimates the
derivative of A at time t. But the derivative of A(t) is
A(t). Therefore, a constant slope indicates constant
A(t), and a changing slope indicates changing A(t).

Grant et al. (1999b) note that for times less than
about one half hour the slope Is approximately
constant, and steep. It is again constant, but less
steep, from about 1/2 hour until about 14 hours, and
it is smaller yet after 14 hours. Therefore, Grant et
al. (1999b) estimate three values for A, correspond-
ing to these three time periods. They comment that
the early, middle, and late failures seem to corre-
spond in part to different failure mechanisms.

6.6 Recovery Times and Other
Random Duration Times

The previous analyses have all involved a single
parameter, A or p. The analysis of duration times is
different because now a distribution must be estimated,
not just a single parameter.

A distribution can be estimated in many ways. If the
form of the distribution is assumed, such as exponential
or lognormal, it is enough to estimate one or two
parameters; the parameter or parameters determine the
distribution. If the form of the distribution is not
assumed, the distribution can be estimated nonparamet-
rically, or characteristics of the distribution, such as
moments or percentiles, can be estimated.

To test whether data sets can be combined (pooled),
both parametric tests and nonparametric tests exist.
The parametric tests typically test whether the means or
variances of two distributions are equal, when the
distributions have an assumed form. The most common
nonparametric tests test equality of the distributions
against the alternative that one distribution is shifted
sideways from the other.

This section is long, because so many distribution
models can be assumed and because the model assump-
tions can be violated in so many ways. A brief outline
of the section is as follows:

6.6.1 Characterization of a single distribution
Estimation of moments, percentiles, c.d.f.s
Fitting of four parametric models (frequentist
and Bayesian parameter estimates)

6.6.2 Model validation (graphs and hypothesis tests)
Poolability, trend
Goodness of fit to assumed parametric models
Consistency of data with prior for Bayesian
parameter estimates

6.6.3 Nonparametric density estimation

Many of the methods will be illustrated using the data
of Example 6.12, taken from Atwood et al. (1998).

This example shows the times when power could
have been recovered, for plant-centered LOSP
events, that is, for events not caused by grid prob-
lems or by widespread severe weather. (Real life is
complicated: sometimes a plant does not restore
power as quickly as It could, and the event report
states when power was actually restored, and usu-
ally also when it could have been restored. The
times given by Atwood et al. (1998) as recovery
times" show when power could have been restored,
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if that time was reported and different from the actual
recovery time.) Discussions of this example will use
the terms recovery time and duration interchange-
ably. Momentary events (duration less than two
minutes) and events with no reported duration have
been excluded. For common-cause events that
affected multiple units at a site, the average recovery
time is used.

Example 6.12 LOSP recovery times.

Atwood et at. (1998) report 115 times of recovery of
lost offsite power. The data are categorized into
three possible values for plant status: T, S, and P.
with meanings explained in the table below. The
durations in minutes and the dates (MMIDD/YY) are
shown.

P: Plant remained at power Otwoughout LOSP event
(8 times)

l 0301t/80 113 0 11a 8 38S 04/11194
45 07/25/85 147 0611080 1138 01/03(89
es 07/n6188 1355 11/n2190

S: Plant was shut down before and dunng LOSP event
(62 times)

.
.

2 0/0484
2 08/17/87
2 06/89
2 O0621194
3 06/26t93
3 10/22(84
3.511/21/85
4 0429/80
4 04/04/87
4 1O2Wt91
5 05/03/84
8 0624/388
9 12/26/88

10 08/0/84
10 04/28/92
10 122381
11 10O4183
11 07/2491
12 06I93
12 07/1986
14 02=0

14
14
15
15
15
17
17
20
22
24
24
29
29
29
35
37
37
37
43
53
59

11/16/84
02101/81
04/27/81
12/19/84
10/12/93
04/26W3
10/14/87
03/23/92

824/84
07/2988
07r29/88
03291
09/1 687
06/14/89
04/02192
0321/87
06/19/93
07/09/90
05/07/85
O9/11/87
16/16187

60 062291
60 06/16/89
62 071/S80
67 03(13/91
73 08/28/8
77 03(a2M
97 01/084
120 06/05684
120 01/16/81
127 01/20/96
132 02/27/95
138 04AW93
140 03/2600
155 03/05687
163 10/0883
240 1114/83
240 03(07/91
335 0429/85
917 10/21/96
1675 11/8i94

The group P exists because some plants are permit-
ted to remain at power during certain LOSP events.

Throughout this section, the random variable is denoted
by T, because typically the random quantity is a dura-
tion time, such as time to recovery of the system.
Several examples were given in Section 2.5.1: time
until restoration of offsite power, duration of a repair
time, and others. Let F denote the c.d.f. of T, F(t) =
Pr(T s t). It is assumed that n times will be observed,
T., T2, ... , T,. The assumptions of Section 2.5.2 are
repeated here.

* The T, s are independent,
* Each T, has the c.d.f. F(t).

A data set satisfying these assumptions is called a
random sample from the distribution. Sometimes the
T, s are called independent Identically distributed
(i.i.d.). The term random sample can refer either to the
random variables (Tjs) or to the observed values, t,, t2 ,

... , t,. The data are used to estimate properties of the
distribution. This can also be described as estimating
properties of the population, where the population is
the infinite set of values that could be randomly gener-
ated from the distribution.

6.6.1 Characterization of Distribution

6.6.1.1 Nonparametric Description

The tools in this subsection are called nonparametric
because they do not require any assumption about the
form of the distribution. For example, the distribution
is not assumed to be lognormal, exponential, or any
other particular form.

6.6.1.1.1 Moments

To estimate the population mean pj or a population
variance d, two simple estimators are the sample
mean, defined as

In

n i_1

and the sample variance, defined as

_ = (T_ i -)
n -I Ji.1

T: Piant tripped because of LOSP event
(45 times)

2 0228/84 20 082/84 90 02/12(84
4 1121/185 20 07/16/84 90 O029/9
4 11117/87 20 0627/91 90 06(17/89
5 O/16/85 24 0815/91 95 12/31/92
8 05/W92 25 10/OA385 95 12/31/92
10 0916/93 29 06/22/82 95 10/1688
10 1/12(93 38 07/1788 96 1227/93
11 07/2884 40 0211/91 100 01/28/86
13 1007/85 45 01/16/90 106 0880
14 08/13/88 45 03/2589 t18 07/2387
15 02/16/84 48 01W01/86 118 07/23(87
15 0914/93 57 1019/92 277 04/23/91
19 10/25(88 60 0321/91 330 02/06/9
20 12/12/85 60 16/22(85 388 07/1487
20 0327/92 62 07/15(80 454 08/22/82

The sample mean and sample variance are known to be
unbiased for the population mean and variance, respec-
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tively. In other words, E(T) = Hand E(S2) = 92. These
statements are true regardless of the distribution F,
requiring only the assumptions of a random sample.
The sample standard deviation, S. is the square root
of the sample variance. When defining S2 some authors
use n in the denominator instead of n - 1, with corre-
sponding adjustment of formulas that involve S, but this
handbook uses the above definition consistently, both
here and in Appendix B. In applications with computer
packages, note which definition is used and make any
necessary adjustments to formulas in this handbook.

These are all-purpose estimators, but they are not the
only possible estimators. For example, the variance of
an exponential distribution is the square of the mean.
Therefore, a good estimator of the variance would be
the square of the estimator of the mean. This estimator
relies heavily on the assumption of exponentiality,
whereas the above estimators make no such assump-
tions. General principles of estimation are discussed in
Appendix B.4.1.

6.6.1.1.2 Percentiles

To estimate percentiles of a distribution, it is useful to
put the data in ascending order from the smallest to the
largest observation. The recovery times in Exam-
ple 6.12 have been arranged this way. The variables
obtained by ordering the random sample are called the
order statistics, and are denoted by Ti} 7 T(2) ...

To., The observed values are written t(i) : t(2) 5 ... < tans

Some important estimates based on the order statistics
are the sample median, other sample percentiles, and
the sample range. The general definition of the I00qth
sample percentile, where 0 < q < 1, is a number t such
that the fraction of observations that are s t is at least q
and the fraction of observations that are 2 t is at least
I - q.

For example, the sample median is defined to be t such
that at least half (because q = 0.5) of the observations
are s t and at least half (because 1 - q = 0.5) are 2 L
This boils down to the following. If n is odd, the
sample median is the "middle" order statistic, to,,,) with
m = (n + 1)12. If n is even, with m = n/2, there is no
unique "middle" order statistic. Any number between
the two middle order statistics, t,,) !5 t S ts,,, could be
used. However, nearly everyone uses the average of the
two middle order statistics (t(,,,) + t(,-+)/2 as "the"
sample median.

The other sample percentiles are defined similarly, with
some averaging of two order statistics if necessary.
Note that the sample 90th percentile is t(.) if n < 10, the
sample 95th percentile is t(,) if n < 20, and so forth.

Order statistics that are sometimes used are: the lower
and upper quartile, defined as the 25th and 75th
percentiles; percentiles that include most of the distribu-
tion, such as the 5th and 95th percentiles; and the
extremes, t(,) and t(.,. The interquartile range is the
upper quartile minus the lower quartile. The sample
range is the difference between the largest and smallest
ordered observations, t(.) - t(,). Be careful with inter-
pretation. As data continue to be collected, the sample
interquartile range stabilizes at the interquartile range of
the distribution, but the sample range does not stabilize
at all - it just grows every time a new t is observed
that is outside the former observations.

The sample median has the advantage of not being
strongly influenced by extreme observations. The
sample mean, on the other hand, can be strongly influ-
enced by even one extreme data value. The sample
variance is even more sensitive to extreme values,
because it is based on squared terms. Therefore, the
sample standard deviation, defined as the square root of
the sample variance, is also sensitive to extreme terms.
Other measures of dispersion, such as the interquartile
range, are much less sensitive to extreme values. In
general, sample percentiles are much less sensitive to
extreme observations than are sample moments.

The recovery times of Example 6.12 have sample
moments and percentiles given in Table 6.16.

Table 6.16 Statistics based on the recovery
times (minutes) of Example 6.12.

_____P |S |T
n 8 62 45

Stand. deviation 373.2 241.4 99.9

95th %ile 1138 240 330

75th %ile 370 73 95
(upper quartile) l

Mean 281.75 92.3 73.4

5Mth%ile 130 24 40
(median) . -

25th %ile 55 10 15
(lower quartile) I

lth 5/ ile 6 2 4

For the P group, the sample median is taken as the
average of the two miiddle numbers. Even though
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the S group has an even number of observations, its
sample median is unique, because 43,, and t.
happen to be equal. The T group has an odd num-
ber of observations, so its sample median is unique,

The S group has one very extreme value, which
influences the moments. The sample mean for this
group is larger than the upper quartile - someone
who considers the mean to be "the' average could
say that more than 75% of the observed times are
below average. Such a thing can happen with a
skewed distribution. This is one reason why many
people prefer percentiles to moments for describing
a skewed distribution.

There are situations in which some of the times are not
observed. Section 6.5 dealt with such a situation, when
the times of interest were times of EDG failure to run,
and not all these times were reported. In the present
section, nearly all the times are assumed to be observed,
with no systematic bias in which times fail to be observ-
able.

6.6.1.13 The Empirical Distribution Function

An estimate of F(t) called the empirical distribution
function (EDF) is defined as follows: For an arbitrary
value of t > 0. define

F(t) = (Number of observations s t) l n.

The EDF is a step function. It increases by lIn at each
observed time if all observations are distinct. More
generally, if there are m times equal to t, A(t) has a
positive jump of rnn at t.

In some settings the function

1 - F(t) = Pr(T> t)

is of interest. If T is the time until failure, 1 - F(t) is
called the reliability function, R(t), in engineering
contexts, and the survival function, S(t), in medical
contexts. A suitable word remains to be coined when T
is the time until recovery or repair. The empirical
reliability function, or the empirical survival function,
is defined as I minus the EDF. Anything that can be
done with F can be translated in terms of I - F, so this
discussion will only consider F.

With a little mental exercise, the EDF can be expressed
in familiar terms. For any particular t, let p denote F(t)
= Pr(T i t). In the data, define a "demand" to be the
generation of an observed time, and define the ith

observation A, to be a "failure" if t, < t. By the assump-
tions for a random sample, any observation has proba-
bility p of being a failure, and the outcomes (failures or
successes) are statistically independent of each other.
By its definition, F(t) is the number of failures di-
vided by the number of demands, which is P, as

indicated in Section 6.3.1. Therefore, F(t) is an
unbiased estimator of F(t) at any t. It is close to FQ)
when the number of observations is large, and a confi-
dence interval for F(t) can be constructed, the familiar
confidence interval for p.

Figure 6.42 shows the EDF based on the data in
Example 6.12 for group T.

1.0

0.8

Er 0.6

0.4
LUi

0.0
0 50 100 150 200 250 300 350 400 450 500

Recovery Uins.! (min.)

Figure 6.42 Empirical distribution function (EDF) for
the data from group T in Example 6.12.

6.6.1.1.4 Histogram Estimate of the Density

The eye smooths the EDF, compensating for its jagged
form. To accomplish the same sort of smoothing for a
density estimate, group the observed times into bins of
equal width, count the number of observations in each
bin, and plot the histogram, a form of bar chart with the
height of each bin equal to the number of observations
in the bin. The histogram is proportional to an estimate
of the density. Some software packages can rescale the
height of the histogram so that the total area equals l,
making it a true density estimate. Books and Ph. D.
theses have been written on density estimation, and
some modern density estimators are quite sophisticated.
A few such are given in Section 6.6.3. Nevertheless,
the lowly histogram is often adequate for PRA pur-
poses.

Figures 6.43 and 6.44 show two histograms for the
data from the above EDF, using two different bin
widths. The analyst rnust decide what bin width
gives the most reasonable results, based on belief
about how smooth or ragged the true density might
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be. Most people would judge Figure 6.44 to be too
rough, and would therefore choose wider bins.

28
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Recovery times (min.)

Figure 6.43 Histogram of the data from group T in
Table 6.16, with bin width 50.

and

2 1S2 = I 7 i (Xi _ X-)2
n-i I

These estimates have the same form as those given in
Section 6.6.1.1.1 for the mean and variance of T, but
these are for InT. Calculate the estimates of p and od
to determine the estimated normal distribution of InT,
which determines the estimated lognormal distribution
of T. Note that the sample variance is defined withn -
I in the denominator, although some authors use n in
the definition and slightly different formulas below.

The material below is presented in many statistics
books, based on the fact that InT has a normal distribu-

tion. The distribution of(n - 1)SX I 9 ischi-squared
with n - I degrees of freedom. It follows that a two-
sided 100(1 - a)% confidence interval for od is

((no -sX / Xl2-,en(n - 1), (n- )x /X42 (n~ 1))

Here z ,2(n - 1) is the q quantile, that is, the lOOq

percentile, of the chi-squared distribution with n-I
degrees of freedom.

The distribution of X is normal( p. don). If d; is
known, it follows that a 100(1- a)% confidence interval
for pi is

I
2
1
Is

I
z

100 150 200 250 300 350 400 450 500
Recovery times (nin.)

Figure 6.44
width 10.

Histogram of same data, with bin

X ± Zl-,112'7 / .-An- ,

6.6.1.2 Fitting a Parametric Distribution

Sometimes it is desirable to fit some assumed distribu-
tional form to data. This subsection gives estimators if
the assumed distribution is lognormal, exponential,
gamma, or Weibull. Bayesian and non-Bayesian
estimates are given, with much of the latter taken from
an INEEL report by Engelhardt (1996).

6.6.1.2.1 Lognormal Distribution

This model assumes that Thas a lognormal distribution,
or equivalently, that In T has a normal(u, o) distribu-
tion. Define X = InT.

Frequentist Estimates. The usual estimates of ju and
od are:

X = - .x
ni

where za-,2 is the 100(1 - af2) percentile of the standard
normal distribution. For example, zo4 5 gives a two-
sided 90% confidence interval.

In the more common case that both p and o; are un-
known, use the fact that

(X - P) /(SX / sF)

has a Student's t distribution with n- I degrees of
freedom. It follows that a 100(1 - a)% confidence
interval for p is

X +t tl-,t2 (n - I)s, / F .

where tl-,Q (n - 1) is the I - af2 quantile of the Stu-

dent's t distribution with n- I degrees of freedom. For
example, t0, 5(n- 1) gives a two-sided 90% confidence
interval. Percentiles of Student's t distribution are
tabulated in Appendix C.
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Bayesian Estimation. Bayesian estimates are given
here.

Conjugate Priors. The conjugate priors and
update formulas are presented by Lee (1997, Sec. 2.13).
They depend on four prior parameters, denoted here as
do, oil no, and p0, The notation here follows the
notation used elsewhere in this handbook. It is not the
same as Lee's. Quantities with subscripts, such as oro
or d,, are numbers. Quantities without subscripts, o;
and u, have uncertainty distributions.

It is useful to think of having do degrees of freedom,
corresponding to do + I prior observations for estimat-
ing the variance, and a prior estimate cq. More pre-
cisely, let the prior distribution for o21(d0o02) be in-
verted chi-squared with do degrees of freedom. That is,
d 0e2ldi has a chi-squared distribution with do degrees
of freedom. Therefore it has meando, and therefore the
prior mean of lId is 1/ 02. (See Appendix A.7.7 for
more information on the inverted chi-squared distribu-
tion.)

An alternative notation for the above paragraph would
define the precision r= Ild, and the prior precision ro
= I/ao. Then the prior distribution of dodro is chi-
squared with do degrees of freedom. Although we shall
not use this parameterization, it has adherents. In
particular, BUGS (1995) uses r instead of od as the
second parameter of the normal distribution; see
Spiegelhalter et al. (1995).

Conditional on d, let the prior distribution for p be
normal with mean ,% and variance odino. This says that
the prior knowledge of # is equivalent to no observa-
tions with variance d;. It is not necessary for no to
have any relation to do.

The Bayes update formulas are

d =do+ n,
n, =no+ n,

= (no0 + nx) / n, and

ad [doa02 + (n _ l)S2 + non hi -x0_)2] d
no + ni

Here the subscript 1 identifies the posterior parameters.
The posterior distributions are given as follows. First,
dzI(d, a,) has an inverted chi-squared distribution with
d, degrees of freedom. That is, the posterior mean of
laI is I/or2, and a two-sided 100(1-a) credible
interval for a2 is

(dlas2 1,2e,(d),<, X212 (di))

Conditional on o2, the posterior distribution of pi is
normnal(p 1, odin,). Therefore, conditional on a2, a two-
sided 100(1- a)% credible interval for p is

A ± Zi-a2 O'/ WnJ .

The marginal posterior distribution of p, that is, the
distribution that is not conditional on a2, is as follows.
The expression

C" - AS ) / (HI / X1_

has a Student's t distribution with d, degrees of free-
dom. It follows that a 100(1 - a)% credible interval
for p is

A' t11, 2 (d,)a /4/;.

Noninformative Prior. The joint noninfor-
mative prior for (A, 02) is proportional to 1/02. Lee
(1997, Sec. 2.13) presents this prior, as do Box and
Tiao (1973, Sec. 2.4). Lee points out that when do =
-1, no = 0, and O2 = 0, the conjugate prior distribution
reduces to the noninformative prior. In the formulas
just given above, n, = n, d, = n - 1, A = X, and o, =
s, The credible intervals then agree numerically with
the confidence intervals given above.

Possible Further Analyses. Some data
analyses require only the posterior distribution of one or
both parameters. In that case, use the above posterior
distributions, with either an informative or noninform-
ative prior. Other analyses require more, such as simu-
lation of a set of lognormal times T or a credible
interval for the mean of T. If so, simulation of the
quantity of interest is a useful technique. Begin each
case of the simulation by generating a value of d from
its posterior distribution. Then generate a value of pI
from its distribution conditional on a2. Then do
whatever is required next to obtain the quantity of
interest: generate a random value of Tfrom the lognor-
mal(p, o) distribution, or calculate E(7) = exp(el +
od12), or calculate whatever else is needed. Save the
quantity of interest produced in this way. Repeat this
process as many times as needed to obtain a sample that
accurately represents the distribution of interest.

Model Validation. Model validation is discussed in
general in Section 6.6.2. Many of the methods given
there are applicable to any assumed distribution. Some
methods, however, have been developed just for the
normal and lognormal distributions. They are con-
tained in Sections 6.6.2.1.2, 6.6.2.2.2, and 6.6.2.3.2.
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6.6.1.2.2 Exponential Distribution

The exponential distribution is related to a Poisson
process, because the times between successiveevents in
a Poisson process have an exponential distribution.

The exponential distribution is presented in Appendix
A.7.4, with two possible parameterizations. The first
uses A = I/E(7), and the second uses u= I/A = E(I). In
data analysis, sometimes one parameter seems more
natural and convenient than the other. In the two
parameterizations, the likelihood function is

A1exp(-.A4t 1)

or

p"exp(-Etf/f) .

pendent observations from an exponential(A) distribu-
tion. Let the prior distribution of A be gamma(ai, pA).
This uses the same parameterization as when A is a
Poisson parameter (Section 6.2.2.4), so that A has units
of time and the prior mean of A is aWA. A direct
calculation shows that the posterior distribution of A is
also gamma, with posterior parameters

A = A + t

The subscript I identifies the posterior parameters. The
prior parameters have a simple intuitive interpretation
- the prior information is "as if" ab duration times had
been observed with total value A.

The percentiles of the posterior distribution are given
by

As a function of A, the likelihood function here is
proportional to the likelihood function given by Equa-
tion 6.1 for Poisson data. (Replace x in Equation 6.1 by
n and t by 21.) Therefore, many of the results below
are similar to or identical to the results in Section 6.2
for Poisson data.

A Z(2a, )
1A =

Therefore, for example, a two-sided 90% credible
interval has end points

Frequentist Esthiation. It can be shown that the MLE
of p is the sample mean, i . Therefore, to estimate the
distribution, estimate p by t. This determines the
estimated exponential distribution. The corresponding

estimate of A E 1/ is 1 / F.

For a (I - a) confidence interval, or equivalently a
100(1 - a)% confidence interval, the lower limit for A
is

A _ 1 (2n)
21 2ti

and the upper limit is

'La I -(2n)

21t

(See Martz and Waller 1991.) Confidence limits for p
= 1/1 are obtained by inverting the confidence limits for
A. Forexample, the lowerconfidence limitforpequals
I divided by the upper confidence limit for A.

Bayesian Estimation. Now consider Bayesian estima-
tion.

Conjugate Prior. The gamma distribution is
a conjugate prior for A. That is, let t,, ... , t, be inde-

=k _02.45(2a3 )
2AQ

and

,2.5 (2a,)

There are two possible ways to perform the correspond-
ing analysis in terms of pu. (a) One way is to perform
the above analysis in terms of A, and then translate the
answer into answers for p = 1/A. Be careful when
doing this. The percentiles translate directly, with the
100p percentilep = I/A, -P. For example, " = 1JA,0.
The moments do not translate directly, however. For
example, the posterior mean of p is Ma(i - 1), not I
divided by the mean of A. (b) The other way is to let u
have an inverted gamma distribution. This distribution
is defined in Appendix A.7.7.

Either analysis gives exactly the same results. The
second approach is just a disguised version of the first
approach, using a different distribution to avoid intro-
duction of the symbol A.

Noninformative Prior. The Jeffreys nonin-
formative prior for A can be expressed as a gamma(0, 0)
distribution. This is an improper distribution, that is, it
does not integrate to 1, but it does result in proper
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posterior distributions as long as some data have been
observed. Note, this prior is slightly different from the
Jeffreys prior when the data have a Poisson distribution.
When the gamma(O, 0) prior is used with exponential
data, the posterior parameters reduce to

apolk = n
pro, = 2 t1 .

Then the Bayes posterior credible intervals are numeri-
cally equal to the confidence intervals. If the purpose
of a "noninformative" prior is to produce intervals that
match confidence intervals, this purpose has been
perfectly accomplished.

Discussion. The above work has illustrated some facts
that are generally true. When the observations have a
discrete distribution, such as Poisson or binomial, the
so-called noninformative priors do not produce credible
intervals that exactly match confidence intervals. This
is related to the fact that confidence intervals from
discrete data do not have exactly the desired confi-
dence coefficient. Instead, they are constructed to have
at least the desired long-run coverage probability. The
situation is different when the observations are continu-
ously distributed, as in the present case with exponen-
tially distributed times. In this case, the confidence
intervals have exactly the desired long-run coverage
probability, and posterior credible intervals, based on
the noninformative prior, are numerically equal to the
confidence intervals.

Nonconjugate priors can also be used. The procedure
is similar to that in Section 6.2.2.6, but now uses the
exponential likelihood given above. Therefore, it is not
discussed here.

the relation r = 1/4i In the present context, t and r
both have units of time.

The MLEs of the parameters are given by Bain and
Engelhardt (1991, p. 298) or by Johnson et al. (1994,
Sec. 17.7). They are the solutions of the equations

r=tla
In(a) - vr(a) = In(i / 7 ), (6.23)

where owu) = r'(u)Ir(u) is the digamma function,
calculated by some software packages, and

7 = exp[(i / n)Z In t,],

is the geometric mean of the observed times. Equation
6.23 must be solved for aby numerical iteration. Bain
and Engelhardt (1991, p. 298) give a table of approxi-
mate solutions, which may be interpolated.

The MLEs of the two parameters determine the esti-
mated gamma distribution.

Bayes estimation is complicated because the gamma
distribution, like the lognormal distribution, has two
parameters, and these two parameters must have ajoint
distribution. Martz and Waller (1991, Sec. 9.5.2) cite
Lwin and Singh (1974) for an analysis that was feasible
in the 1970s. A simpler approach today would use the
freely available software package BUGS (1995),
described in Section 6.2.2.7, Section 8.3.3.3, and
elsewhere in this handbook. BUGS is designed for
models with many unknown parameters, and should
make short work of a model with only two. The joint
prior distribution would not need to be conjugate.

Model Validation. Model validation is discussed in
general in Section 6.6.2. Many of the methods given
there are applicable to any assumed distribution. A few
methods, however, have been developed just for the
exponential distribution. They are mentioned in Sec-
dons 6.6.2.3.1 and 6.6.2.4.1.

6.6.1.3 Gamnma Distribution

The distribution of T is gamma(a: t) if the density is

f(t) a t a--e

6.6.1.2.4 Weibull Distribution

A three-parameter Weibull distribution is given in
Appendix A.7.5. A two-parameter form of the Weibull
distribution is given here, by setting the location param-
eter Oto zero. The density is

f(t)=(is/a)(t/a) '8exp[-(t/a)'] .

As with the gamma distribution, the maximum likeli-
hood equations do not have closed-form solutions. The
estimates must be found by iteratively solving

Note, this is a different parameterization from the
previous section and from Equation 6.4. This parame-
terization is related to the earlier parameterization by

Ztf ln(t1 ) 1 1
,ZA tf -. n i
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and

a = ' Itf)

estimates of # and a. In the calculations, it does not
matter whether natural logarithms or logarithms to base
10 are used, as long as the same type is used every-
where.

Zacks (1992, Section 7.5) gives the following simple
method for solving the first equation. Begin with

ft. = 1. Then repeatedly solve the equation

This plot also gives a diagnostic test of whether the
Weibull distribution is appropriate. The degree to
which the plotted data follow a straight line indicates
the degree to which the data follow a Weibull distribu-
tion.

Ed=11'- -- XlnflI
11 fr n

with n =,1,2,... The valueof

to the MLE ft . Then set

Just as in Sections 6.6.1.2.1 and 6.6.1.2.3, Bayes
estimation is complicated here by the multiple parame-
ters. Martz and Waller (1991, Sec. 9.1) cite a number
of early papers using various prior distributions.
However, the easiest Bayesian approach today would
be to assign convenient diffuse priors to the parameters
and use BUGS (1995), described in Section 6.2.2.7,
Section 8.3.3.3, and elsewhere in this handbook.

converges quickly

I a /= 6.6.2 Model Validation

For more information, see Zacks (1992) or Bain and
Engelhardt (1991).

Alternatively, a simple approximate graphical estimate
is based on the hazard function. Plots of the cumulative
hazard were discussed in Section 6.5.2. It can be
shown that the cumulative hazard function of the
Weibull distribution is

H(t) = (dld/.

Therefore, estimate the cumulative hazard function as
explained in Section 6.5.2, byjumping ateach observed
time, with the size of the jump equal to I divided by the
number of times that have not yet been equalled or
exceeded. The jump at tl) is l1n, the jump at to) is 1I(n
- 1), and so forth until the final jump at t(,) is 1. Call
this estimate H(t). The equation for the Weibull
cumulative hazard function can be rewritten as

This section considers several topics. First, the usual
investigations of the model assumptions are considered:
whether subsets of the data all correspond to the same
distribution, whether the distribution changes with time,
and whether the times are serially correlated instead of
statistically independent. In addition, the distribution
may have been modeled by some parametric form, so
the goodness of fit is investigated. Finally, if parame-
ters have been estimated in a Bayesian way, the consis-
tency of the data with the prior must be investigated.

The order described above follows the actual order of
analysis. First, the analyst would check to see what
data subsets can be pooled and whether the usual
assumptions seem to be satisfied. Only then would it be
appropriate to try to fit some standard distribution to the
data.

6.6.2.1 Poolability of Data Sources

To illustrate the methods here, this subsection will
consider the three groups of data in Example 6.12,
corresponding to three conditions of the plant during
the LOSP event. As elsewhere in this chapter, graphi-
cal methods are considered first, and statistical tests
second.

6.6.2.1.1 GraphIcal Methods

A simple, graphical method of comparison is to overlay
the EDFs for the different data subsets on a single
graph. Then, look to see if the EDF are intertwined,
indicating that the subsets may be pooled, or if they are

log H(t) = 4 logz -.aogc, (6.24)

which is linear in logt. Therefore, plot log[l(t)]

against logt, that is, plot H(t) against t on log-log
paper, and fit a straight line to the plot by eye. Pick a
point on the line and substitute those values of t and
R(t) into Equation 6.24. This is one equation that/I

and logir must satisfy. Pick a second point on the line
and obtain a second equation in the same way. Solve
those two equations for 8 and loga, thus obtaining
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separated, shifted sideways from each other, indicating
that the data subsets may not be pooled. This method
is simple, but the graph can become very cluttered,
especially if a moderate or large number of subsets
must be compared. The same comment can be made
for comparing separate histograms of the data subsets.

A graph that. has come into common use is the box-
and-whisker plot, or box plot The lower and upper
edges of the box are the lower and upper quartiles of
the data. Thus, the box can be thought of as containing
half the data, with 1/4 of the remaining data on each
side. The median is marked somehow. The "whiskers"
are two lines coming out of the box and going out to
cover the range of most of the data, up to 1.5 times the
interquartile range in each direction. A few outlying
points are plotted individually.

Figure 6.45 shows a box plot of the group T data
from Example 6.13 generated using the STATISTICA
(1995) software. The median is marked by a small
square in the box. The software documentation does
not give a precise definition of- the difference be-
tween an outlier and an extreme point. Also, this
release of the software seems to have a small bug,
in that the maximum (excluding outliers) is labeled
as 11, when it should be 118.

500

400

300

200

100

Figure 6.46 A different style box plot of the same
data. The box shows the upper and lower quartiles,
with the median indicated by a stripe. The whiskers
show much of the range, with dots marking outliers.

The example here is typical, in that the data are skewed,
and the most obvious feature of the box plots given here
is the long distance from the box to the largest value.
Box plots are supposed to focus on the bulk of the data,
with only moderate attention given to the extremes.
Therefore, there are visual advantages to transforming
skewed data by taking logarithms. Therefore, all the
remaining box plots shown in this section will use
logl0(recovery time) instead of the raw times.

500.
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i

~200
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0

0

Figure 6.47 shows side-by-side box plots of the three
data subsets in Example 6.12. Incidentally, the box
plot of log(time) is different from the box plot of time
plotted on a logarithmic axis - the logarithms of
large times tend not to be considered as outliers.
This can be seen by comparing Figure 6.45 with the
group-T portion of Figure 6.47.
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Figure 6.45 One form of a box plot. The box shows
the lower and upper quartiles, with the median
marked. The whiskers show most of the range, from
4 to 11 8, and individual outlying points are plotted.

Figure 6.46 shows the same box plot as drawn by a
different software package, SAS/INSIGHT (1995).
As before, the box shows the lower and upper quar-
tiles, and the median is marked, this time with a
stripe. Points beyond the whiskers are shown as
individual dots.

Box plots were invented by Tukey (1977), and are still
being modified according to individual taste. Any form
of the plot that is produced by a convenient software
package is probably adequate.
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Figure 6.47 Side-by-side box plots of the three
groups of data from Table 6.16, based on
log10(recovery time).

Figure 6.47 shows that group P seems to have
somewhat longer recovery times than the other
groups. There seems to be little difference between
groups S and T. Tests willbe given below to investi-
gate whether this visual impression is correct

i'
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6.6.2.1.2 Statistical Tests

Tests Based on Normality. Warning: these tests are
only valid if normality or lognormality can be assumed.
If each data subset corresponds to a lognormal distribu-
tion, work with X = log(T). Either natural logs or base-
10 logs can be used, because loglo(1) = ln(7)/ln( 1O), so
both are normally distributed if either is.

When X has a normal distribution, standard tests based
on normal theory can be used, as given in many statistic
books. These tests investigate whether p. the mean of
X, is the same in each data subset, under the assumption
that the variances are the same. For added sophistica-
tion, tests of equality of the variances can also be
performed:

* To compare the means of two data subsets, per-
form a Student's t test.

* To simultaneously compare the means of two or
more data subsets, perform a one-way analysis of
variance test.

* To compare the variances of two data subsets,
perform an F test.

* To compare variances of two or more data subsets,
use some version of a likelihood ratio test, such as
Bartlett's test or a Pearson-Hartley test, as dis-
cussed by Bain and Engelhardt (1992, p. 426).

These tests are not considered further here, because
they rely heavily on the assumption of normality. This
is especially true of the tests later in the list. Most
statistical software packages will perform these tests.
The analyst must ask whether the assumption of nor-
mality is established well enough to justify the use of
the tests.

Nonparametric Tests Based on Ranks. For general
use when normality or lognormality is not well estab-
lished, nonparametric tests are preferable. The books
by Conover( 1999) and Hollander and Wolfe (1999) are
excellent summaries of standard tests. As before, let X
= log(T), but do not assume that X has a normal
distribution or any other particular distribution. Tests
for location assume that various data subsets have
distributions that are shifted sideways from each other.
The shapes are the same, but the medians may be
different. This is the nonparametric analogue of
assuming that the distributions are normal with a
common variance, but possibly different means. Tests
for dispersion assume that the shapes are the same, but
possibly with different location and scale parameters.
This is the nonparametric analogue of assuming normal
distributions with possibly different means and vari-
ances.

To test equality of two medians against a shift alterna-
tive, use the Wilcoxon-Mann-Whitney test. This test
was introduced in Section 6.3.3.2.2. In the present
context, let W denote the sum of the ranks of times for
the first data subset, when all the times are considered
together. The ranks are the same whether or not the
logarithmic transformation is performed.

For example, to compare group P to group S in
Example 6.12, arrange all 70 times from the two
groups in ascending order, and mark the times
corresponding to group P. The smallest time from
group P is 6 minutes. This has rank 12, because it
is preceded by 11 values in group S from 2 to 5
rrinutes. The other ranks are found similarly. Ties
are handled by assigning the average rank to all ted
values. The rest of the test was explained in Section
6.3.3.2.2. It is not detailed here, because the test is
normally performed by a computer.

To test whether two or more data subsets can be
pooled, the test of choice is the Kruskal-Wallis test. It
tests whether the distribution of T is the same in all the
data subsets, against the alternative that the distribu-
tions have the same shape but different medians. The
test is based on a sum of ranks for each data subset.
Those who want details can look in Conover (1999) or
Hollander and Wolfe (1999); everyone else can just let
the computer do the test.

When the Kruskal-Wallis test is applied to all three
groups in the data of Example 6.12, it rejects equality
of the distributions with p-value 0.026. This Is
consistent with the graphical comparison In Figure
6.47 - clear evidence of a difference, though not
extreme overwhelming evidence. Based on these
analyses, Atwood et al. (1 998) dropped group P from
the analysis of durations, and combined groups S
and T. Group P consists of LOSP durations when
the plant remained at power throughout the event
The authors comment on reasons why plant person-
nel might be very deliberate In restoring offsite power
while the plant is still up and running.

To test for equality of dispersion of two data subsets,
the rank-like test of Moses is recommended. This
requires splitting each data subset into two or more
parts, and so is not suitable for very small data sets.
See Hollander and Wolfe or documentation of a statisti-
cal software package for details for applying this test.

A well-known nonparametric test has not been devel-
oped for testing equality of dispersion of more than two
data subsets. Therefore, graphical comparisons, such as
side-by-side box plots, should be an important part of
the analysis.
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Nonparametric Test Based on EDFs. A well-known
test for comparing two data subsets is the two-sample
Kolmogorov-Smirnov test. It is based on comparing
the empirical distribution functions for the two data
sets. The test statistic is

D = max,[I F(t) - G(t)l

where F(t) and G(t) are the empirical distribution
functions from the two data sets. Many software
packages can perform this test.

6.6.2.2 No Time Trend

This section will be illustrated by an extension of
Example 6.12. taken directly from Atwood et
al. (1998).

Based on the above type of analysis of Example
6.12, the LOSP study (Atwood et al. 1998) pooled
the data from groups S and T, but excluded group P.
That report also combined common-cause pairs of
events at multiple units into single site-events (one
pair of shutdown events, two pairs of trip events, and
two pairs that involved a shutdown reactor and a
reactor that tripped). This gave a total of 102 site
events instead of the 107 in Example 6.12. They are
sorted by event date and listed as Example 6.13.
Times are in minutes, and dates are MMI/DD/YY.

6.6.211 Graphical Methods

One natural way to examine the data for a trend is
through a scatter plot of the observed values against
calendar time. Often, as in Example 6.13, a few large
values are outliers. They will determine the scale of the
vertical axis. Compared to those large values most of
the other values are very small, hugging the horizontal
axis. In such a case, the observed values should be
transformed typically by taking logs.

Figure 6.48, from the LOSP study (Atwood et al.
1998), shows a plot of logi 0(recovery time), for the
data of Example 6.13. Visually, any trend in time
appears to be very slight. The section below, which
considers statistical tests, will re-examine this exam-
ple.

A potentially more helpful plot is a cumulative plot of
recovery time against chronological sequence. The
vertical axis shows cumulative recovery time, that is,
cumulative duration of LOSP events. No logarithmic
transformation is made, because a sum of durations is
easy to interpret, but a sum of log(duration) is harder to
interpret. Also, logarithms can be negative, so a cumu-

lative plot of logarithms would not necessarily be
monotone.

Example 6.13 LOSP recovery times and event
dates.

4 04/22/80 3.5 11/21/85 40 02/11/91
106 06/03/80 4 11/21/85 240 03/07/91
62 07/15/80 20 12/12/85 67 03/13/91

120 01/16/81 46 01/01/86 29 03/20/91
14 02/01/81 100 01/28/86 60 03/21/91
15 04/27/81 12 07/19/86 277 04/23/91
10 12/23/81 155 03/05/87 24 06/15/91
29 06/22/82 37 03/21/87 60 06/22/91
17 04/26/83 4 04/04/87 20 06/27/91
11 10/04/83 388 07/14/87 11 07/24/91

163 10/08/83 118 07/23/87 4 10/20/91
240 11/14/83 2 08/17/87 77 01/29/92

97 01/08/84 53 09/11/87 20 03/23/92
90 02/12/84 29 09/16/87 20 03/27/92
15 02/16/84 17 10/14/87 35 04/02/92

2 02/28/84 59 10/16/87 10 04/28/92
5 05/03/84 4 11/17/87 6 05/03/92
2 06/04/84 8 06/24/88 454 08/22/92

120 06/05/84 38 07/17/88 57 10/19/92
20 07/16/84 24 07/29/88 95 12/31/92
11 07/26/84 14 08/13/88 136 04/08/93
10 08/01/84 95 10/16/88 37 05/19/93
20 08/21/84 19 10/25/88 12 06/22/93
22 08/24/84 9 12/26/88 3 06/26/93

3 10/22/84 45 03/25/89 10 09/10/93
14 11/16/84 90 03/29/89 15 09/14/93
15 12/19/84 29 05/14/89 12.5 10/12/93

335 04/29/85 60 06/16/89 96 12/27/93
43 05/07/85 90 06/17/89 2 05/21/94
5 08/16/85 2 06/29/89 1675 11/18/94

73 08/28/85 45 01/16/90 132 02/27/95
25 10/03/85 14 02/26/90 917 10/21/95
13 10/07/85 140 03/20/90 127 01/20/96
60 10/22/85 37 07/09/90 330 02/06/96

I
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Figure 6.48 Log 10(recovery time) plotted against
event date, for data from groups S and T in Example
6.13.

If the horizontal axis shows event date, the slope of the
curve represents average LOSP duration per calendar
time. If, instead, the horizontal axis shows event
sequence number, that is, the cumulative number of
events, then the slope represents average LOSP dura-
tion per event. The latter is more meaningful in a study
of durations.
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Finally, a diagonal line, connecting the origin to the
final point, provides a reference guide, so that the eye
can better judge the straightness of the plot.

Figure 6.49 shows the cumulative duration plot for
the data of Example 6.13.
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Figure 6.49 Cumulative duration of LOSP events
versus cumulative number of events.

The cumulative plot clearly departs from the diagonal
straight line, because of two large duration times
near the right of the plot. The LOSP report mentions
that one of those two times is conservatively large.
The LER narrative states that recovery could have
been performed earlier, but it does not give an
estimated possible recovery time. The LOSP report
used times when recovery would have been possi-
ble, when such times were available, but for this
event the report was forced to use the actual recov-
ery time.

In Figure 6.49, a second dashed line connects the
origin (0, 0) to the 97th point, just before the first of
the two large jumps. The cumulative plot stays close
to this line until the large recovery times occur.
Thus, any trend" is the result, not of a gradual
increase in recovery time, but of a couple of outlying
values, one of which is conservatively large. Figures
6.48 and 6.49 both reveal the two large recovery
times. In this example, however, the cumulative plot
seems more informative than the scatter plot, be-
cause the log-transformation in Figure 6.48 makes
the large times appear less dramatic.

6.6.2.22 Statistical Tests

Test Based on Normality. Using the method of least
squares fitting, data from a scatter plot may be fitted
with a straight line. Most software packages then test

of the hypothesis that the slope is zero, assuming
normally distributed scatter around the line.

The cited LOSP report fitted a straight line to the
data in Figure 6.48 using the least squares method.
The trend was reported as statistically significant at
the 0.03 level.

This conclusion of a statistically significant trend
seems surprising, based on the minimal apparent
trend in the figure. The report authors did not have
the insights given by the cumulative plot, but they
critiqued the calculation in several ways:

* The calculation assumes that log( T) is normally
distributed around the trend line. The lognormal
distribution (without modeling a trend) was found
to fit the data well, and the scatter plot appears
consistent with normality. Therefore, the calcu-
lated p-value of 0.03 is close to correct.

* The evidence for the trend was very sensitive to
the two values in the upper right of the figure.
Dropping either value raised the p-value to 0.08.
Further, one of those values was known to be
conservatively high, as discussed above. This
means that the trend may in part be an artifact of
the data coding.

* The magnitude of the trend is small. A linear
trend in the mean of log(7) corresponds to an
exponential trend in the median of T. The mag-
nitude of this trend is a factor of 3.6 over the 17
years of the study. This is fairly small from an
engineering viewpoint

* No solid engineering reasons were found to
explain the trend.

Section 6.2.3.1.2 of this handbook discusses how test
results should be interpreted. It states that calculation
of a p-value is only part of the analysis, and should be
followed by critical thinking. The above bulleted list of
considerations illustrates that kind of thinking. Use of
a cumulative plot would have helped the report authors
even more, revealing that a smooth trend of any kind is
inappropriate. The authors of the LOSP study chose
not to model a trend, but recognized that additional data
might change this decision.

Nonparametric Test. A test for a trend that does not
assume normality is easy to construct. Such a test is
necessary if normality cannot be assumed. If normality
can be assumed, the nonparametric test is less powerful
for detecting a trend, because it ignores available infor-
mation, that the data are normally distributed.
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The test is the Wilcoxon-Mann-Whitney test, first
introduced in Section 6.3.3.2.2. To apply it here,
arrange the times sequentially, in order of their event
dates. Count an event as A if it is above the median and
as B if it is below the median. Discard any values that
equal the median. Now carry out the Wilcoxon-Mann-
Whitney test based on the ranks of the As in the se-
quence of all the events. Because this test is based only
on comparisons to the median, it is the same whether or
not logarithmic transformations are used.

When this was done with the data from Example
6.13, the median duration was 29. The first duration
in Example 6.13 was a BA the next three were A, and
so forth. In all, there were 48 As and 50 Bs. The As
had higher average rank than the Bs, suggesting an
upward trend, but the p-value was 0.09, not quite
statistically significant. The nonparametric test is not
as sensitive as the parametric test for detecting the
small trend, in part because it does not make as
much use of the two extreme values seen in Figure
6.49. If the normality assumption were not satisfied,
only the nonparametric test would be valid.

distribution. The estimated mean is 3.389 and the
estimated standard deviation is 1.434. The In(time)
values are modeled as normally distributed with this
mean and variance. The raw times have the corre-
sponding lognormal distribution.

Figure 6.50 shows the histogram density with a fitted
lognormal density overlaid. Because this distribution
is concentrated at small values, the goodness of fit is
difficult to judge. Therefore, the histogram of the
In(time) values are also plotted, with a normal density
overlaid, in Figure 6.51. Actually, the area under the
histogram equals the number of observations, and
the density has been rescaled to have the same
area.

logromm (x. 3.38836. 1.434478)

I.1
6.6.2.3 Goodness of Fit to Parametric Models

One way to model recovery times and other durations
is to model the distribution of the durations by some
parametric distribution, such as lognormal, Weibull,
etc. One must then check to see if the data fit this
proposed model well. This section gives graphical
methods and statistical tests for such investigations.

6.6.2.3.1 Graphical Methods

The basic idea is to compare nonparametric estimates,
which come directly from the data, with estimates based
on the fitted model under consideration. For example:

* Compare the histogram to the density from the
fitted model.

* Compare the EDF to the c.d.f. of the fitted para-
metric model. Equivalently, compare the empirical
reliability function (I minus the EDF) to the fitted
reliability function.

* Compare the quantiles of the data to the quantiles
of the fitted distribution. This plot is called a
quantile-quantile plot, or a Q-Q plot. Q-Q plots
have become very popular for assessing goodness
of fit, although they take getting used to.

These three comparisons are illustrated below, using
the data of Example 6.13, and an assumed lognor-
mal distribution. First, the fitted distribution is found
by taking natural logarithms of the recovery times,
and estimating the mean and variance of their

0 200 400 600 800 1000 1200 1400 1600
Recovery time (min.)

Figure 6.50 Histogram of data from Table 6.19, with
multiple of lognormal density overlaid. The skewness
makes goodness of fit difficult to assess.
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Figure 6.51 Histogram of In(time), with a multiple of
a normal density overlaid. Fit appears as good as
achievable without using a bimodal distribution.

Figure 6.52, from the LOSP report, shows a plot of
the reliability function, 1 minus the EDF, with the
corresponding fitted function, 1 minus the lognormal
c.d.f. The plot in this form is useful for interpreting
the degree to which the fitted c.d.f. differs from the
empirical c.d.t., because the horizontal axis is in
units of time. A plot in terms of log(time) would not
hug the axes so closely. Therefore, discrepancies
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between the curves would be more visible, but their
magnitudes would be harder to interpret in real-world
terms.
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Figure 6.52 Empirical and theoretical reliability
functions, where the reliability function is defined as
1 minus the c.d.f.

Finally, Figure 6.53 gives a quantile-quantile (Q-Q)
plot, described by Wilk and Gnanadesikan (1968). If
only one plot could be used, a Q-Q plot would be a
strong contender. A Q-Q plot compares two distribu-
tions by plotting the quantiles of one against the corre-
sponding quantiles of the other. If X is a linear function
of Y, X = a + bY, then a Q-Q plot of X versus Y will be
linear. The parameters a and b do not need to be
known or estimated; linearity of the plot tells the analyst
whether the two distributions are the same except for a
linear transformation. Users of probability paper will
recognize that a plot on probability paper is a form of a
Q-Q plot.

sponding order statistics assuming normality. For
example, denote In(O by y. In the implementation of
this particular software package, the Ah ordered
value, ya,, is plotted against the expected value of ;,,
assuming that 102 values of Zare randomly sampled
from a standard normal distribution. The points
follow a straight line. This indicates that the data are,
apparently, normally distributed.

The parameters, pt and a, can be ignored in a Q-Q plot
based on the normal distribution, because a normal
random variable Y with mean p and standard deviation
ois related to Z by Y= # + oZ. This is a linear trans-
formation, and so does not change the linearity or
nonlinearity of the plot. In fact, it is not even necessary
to obtain estimates of pu and a. For distributions other
than normal, the parameters may need to be estimated
before the Q-Q plot can be constructed.

The expected values of the order statistics cannot be
constructed without tables or a computer program.
Users of probability paper may construct a simpler
version, plotting y(, against the iI(n+1) quantile of a
standard normal distribution. Here n is the total number
of observations, 102 in the present example. This
simpler version gave its name to the plot, a quantile-
quantile plot.

For the purpose of illustration, Figure 6.54 gives a 0-
Q plot of the same example data, assuming that the
raw recovery times have a normal distribution. Of
course the fit is horrible - no one expects the raw
times to have a normal distribution. This lack of fit is
shown by strong curvature in the plot. The two
largest times show the lack of fit most emphatically,
but even without them the plot appears to show a
curvature that indicates non-normality.

=7

13
0

-3 -2 -1 0 1 2 3

Theoretical normal quaftle

Figure 6.53 Quantile-quantile plot of In(recovery
time) and fitted normal distribution. The points fall
nearly on a straight line, indicating good fit.

In Figure 6.53, the software package Implemented
the 0-0 plot by plotting the ordered values of In(time)
against the theoretical expected values of the corre-
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Figure 6.54 Quantile-quantile plot of raw recovery
times against fitted normal distribution. The strong
curvature indicates bad fit
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The particular form of the distribution can sometimes
allow special tricks. Let us leave the present example,
and consider investigating whether data tl, ..., t. come
from an exponential distribution. Example 6.6, which
was deferred from Section 6.2.3.4, will be used to
illustrate the method.

The idea of the Q-Q plot is that, when the data come
from the assumed distribution, then

1,- F-'[il(n+l)],

where F` is the inverse of the assumed c.d.f. Let us
find the inverse of the exponential c.d.f. Set

y=F(t)= I - e-

To find the inverse, solve for t = FAy):

e' = I-Y

and therefore

t = -In(1 - y)I.

The right-hand side is F'(y), so the defining relation of
the Q-Q plot is

tio - -In[l - iI(n+l)j/A.

Thus, a plot of the ordered times against -n[l -
iI(n+ 1)1 should be approximately linear, regardless of
the value of A. The linearity or nonlinearity of the plot
does not depend on whether A has been estimated well.
Nonlinearity is evidence against the assumed exponen-
tial distribution.

Example 6.6 contains times between LOSP events,
which should be exponentially distributed. A plot of
the ordered times against -In[1 - iU(n+l)J is shown in
Figure 6.55. Because the plot does not show much
curvature, it indicates good fit to the exponential
distribution.

6.6.23.2 Statistical Tests

specify the parameters. Therefore, the null hypothesis
includes a family of distributions. The alternative
hypothesis is that the data come from some other
distribution.
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Figure 6.55 Q-Q plot for checking exponential
distribution in Example 6.6.

As always, remember that "acceptance" of the null
hypothesis does not provide evidence that the null
hypothesis is true. It merely indicates a lack of evi-
dence that the null hypothesis is false. For example, the
data may be consistent with a lognormal distribution,
and also consistent with a gamma distribution and a
Weibull distribution. In such a case, the analyst should
not make assertions that are highly dependent on the
form of the distribution. For example, a sample of 10
observations may be consistent with many possible
distributions. An estimate of the 99.9th percentile of
the distribution would be a large extrapolation from the
actual data, highly dependent on the assumed form of
the distribution. A confidence interval on this percen-
tile would be even worse, because it would give an
appearance of quantified precision, when in reality the
distribution could have practically any form out in the
tail.

In summary, even though a model has been "accepted,"
it is only an approximation. The analyst should not
make assertions that are sensitive to small departures
from the model.

The previous section used graphs to investigate whether
data followed a certain kind of distribution. The
present section gives statistical tests of hypotheses, for
investigating the same question. The tests here are
called goodness-of-fit tests, because they are intended
to test whether the data fit the assumed model well.
The null hypothesis is that the data come from a distri-
bution of the assumed form, for example, from a
lognormal distribution. The null hypothesis does not

Chi-Squared Test. The chi-squared test, seen in
Sections 6.2 and 6.3, is also an all-purpose goodness-
of-fit test. To apply it in the present context, estimate
any unknown parameters of the hypothesized distribu-
tion of T. Based on these parameter estirnates, divide
the time axis into c bins of equal probability. The letter
c stands for cell, another term for a bin in this context.
Based on the recommendations of Moore (1986),
choose the number of bins so that n/c is at least 1, and
preferably at least 2. Let x1be the observed number of

6-70



Parameter Estimation and Model Validation

values of Tin the ith bin. Because the bins have equal
probability, the expected number of values of Tthat will
fall in any bin is n/c, the number of observations
divided by the number of bins. The Pearson chi-
squared statistic is

X2 = EpX - e)ZIej,

where each e, equals n/c and each x, is an observed
count.

If the null hypothesis is true, the distribution of X2 is
approximately chi-squared. The commonly quoted rule
is that the degrees of freedom is c - I - p, where p is
the number of estimated parameters. For example,
suppose the null hypothesis is that the distribution of T
is lognormal, or equivalently, that ln(7) is normal.
Then two parameters must be estimated, p and o. Thus,
the commonly quoted rule for the degrees of freedom is
c - 3. In fact, researchers have found that this is not
quite correct, for subtle reasons described by Moore
(1986, Section 3.2.2.1). The correct degrees of free-
dom are somewhere between c - I - p and c - l. The
exact value depends on the form of the distribution in
the null hypothesis.

Let us apply this to the LOSP-recovery data from
Example 6.13, and use X = In(7) for convenience.
Let H. be the hypothesis that X is normally distrib-
uted. As mentioned above, the estimates of p and
oare 3.389 and 1.434. With 102 observations, it is
convenient to take 50 bins, so that each expected
count is 102150 = 2.04. The bin boundaries are the
0.02, 0.04, ..., 0.98 quantiles of the distribution.
These are estimated as

yq = 3.389 + 1.434z,,

where q is 0.02, 0.04, etc., and z; is a quantile
interpolated from a table of the standard normal
distribution. For example, zo02 = -2.054.

When this is carried out, using a computerto perform
the calculations, the value of x2 is 63.69. The
distribution under H. Is chi-squared with degrees of
freedom between 47 and 49. Therefore, the p-value
is between 0.053 and 0.077. The test almost rejects
normality of In(7) at the 0.05 level, in spite of the
graphical evidence to the contrary.

Upon examination, the test is revealed to be too
powerful for its own good. It notices that the values
tend to cluster, five occurrences of 2 rminutes, six
values of 20 minutes but no values of 21 minutes,
etc. With 50 cells, each observed time is commonly
the sole occupant of a cell. The test notices that the
numbers have been rounded to convenient times,

such as 20 minutes, and uses this as evidence
against normality. In fact, such clustering is a depar-
ture from normality, and from any other continuous
distribution. But it is not the kind of departure that is
of interest to most analysts.

A coarser binning, into fewer cells, would not be
distracted by fine clustering, and would search for
more global departures from the null hypothesis.

We conclude this discussion of the chi-squared test by
considering again the exponential example that was
deferred from Section 6.2.3.4.

Example 6.6 consists of 25 times. The null hypothe-
sis is that the data come from an exponential distri-
bution. The unknown A is estimated as the number
of events divided by the total observation period,
25/(2192 days) = 0.0114 events per day. This MLE
is justified based on the Poisson count of events, as
in Section 6.2.1.1. To obtain a moderate expected
count in each bin, let us use ten bins. They have
equal estimated probabilities, 0.10 each, if they run
from

0 days to [-In(0.9)yoJ.0114 = 9.24 days
9.24 days to [-In(0.8)J/0.01 14 = 19.57 days

201.89 days to infinity.

These calculations are all based on the exponential
c.d.f., f(t9 = 1 - exp( -Ao. Setting FRt to 0.1, 02, and
so forth gives the bin boundaries.

There are four observed times in the first bin, two in
the second, and so on. The expected count in each
bin is 25/10 = 2.5. The calculated value of X2 is
9.00. This must be compared with the percentiles of
the chi-squared distribution. There are c = 10 bins,
and p = 1 estimated parameter. Therefore, the
degrees of freedom are between 10 - 1 = 9 and 10
- 2 = 8. The value 9.00 is in the middle of both of
these distributions, the 56th percentile of one and the
66th percentile of the other. Therefore, the chi-
squared test finds no evidence against the exponen-
tial distribution. This agrees with the earlier graphical
analysis.

Shapiro-Wilk Test for Normality. Many software
packages offer the Shapiro-Wilk test for normality. It
is based on obseving how closely the order statistics
follow theoretical normal values, as displayed for
example in Figure 6.53. For testing the normal distribu-
tion, the Shapiro-Wilk test is one of the most powerful
tests against a wide variety of alternatives. Details are
not given here, because all the calculations are carried
out by the computer.
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With the logarithms of the data of Example 6.13, the
Shapiro-Wilk test does not reject normality of In(T),
giving a p-value of 0.34. This agrees with the visual
evidence of Figure 6.53.

Tests Based on the EDF. Several families of tests
have been proposed based on the empirical distribution
function (EDF, defined in Section 6.6.1.1.3). The idea
is to reject the null hypothesis if the EDF is not "close
to" the theoretical c.d.f. Closeness can be measured in
various ways, giving rise to a variety of tests. EDF-
based tests are appealing because they do not require a
choice of bins, but simply use the data as they come.

The most famous such test is the Kolmogorov test, also
known as the Kolmogorov-Smirnov test. It is described
in Appendix B.3.4. This test differs from the similarly-
named test in Section 6.6.2.1.2 because the present test
asks whether a random variable has a certain distribu-
tion, and the earlier test asks if two random variables
have the same distribution. These are slightly different
questions. The test here rejects Ho if

max |F(t) - F(t)l

is large, where the maximum is over all values of t.
Here, any unknown parameters in F must be estimated;
the effect of this estimation is typically ignored.

When SAS (SAS Version 8, 2000) performs the
Kolmogorov test of lognormality on the times in
Example 6.13, it gives a p-value > 0.15. That is, it
does not calculate the exact p-value, but it does
report that the departure from lognormality is not
statistically significant.

The Cramdr-von Mises test and the Anderson-Darling
test are other EDF-based tests, designed to remedy
perceived weaknesses in the Kolmogorov test. The
Cramdr-von Mises test is based on

J[F(t)- F(t)tf (t)& .

Here, Fis the distribution that is assumed under the null
hypothesis, andf is the corresponding density. Thus,
the Kolmogorov test looks at the maximum difference
between F and F, while the Cramnr-von Mises test
looks at an average squared difference. The Anderson-
Darling test is based on

J{[F(t) -F(t)? / IF(t)[l- F(t)J)Jd7.

This division by F(t)[ I - F(t)] gives greater weight to
the tails of the distribution, where departures from F is
most likely to occur. Thus, this test is intended to be
more powerful than the Cramdr-von Mises test against
common alternative hypotheses. Many statistical
packages perform one or more of these tests.

When testing lognormality of the data in Example
6.13, SAS reports a p-value of >0.25 for the Cramdr-
von Mises test and also for the Anderson-Darling
test. Just as for the Kolmogorov test, SAS does not
compute the exact p-value, but it does report that the
departure from lognomnality is not statistically signifi-
cant.

6.6.274 Consistency of Data with Prior in
Bayesian Parametric Estimation

The issue here is whether the data are consistent with an
assumed informative prior distribution for the unknown
parameters. If a noninformative prior distribution is
used, then the question does not arise, because the
noninformative distribution is supposed to be consistent
with anything.

6.6.2.4.1 Exponential Durations

A quantitative approach is possible when T has an
exponential(4) distribution. In this case all the informa-
tion of interest about A is contained in Et, as seen in
Section 6.6.1.2.2. Therefore, we can compare Et, to
what would be expected based on prior belief about 1.

If Et, is surprisingly large or surprisingly small, that is,
if Et, is in either tail of the distribution of ET,, then the
prior distribution is questionable. The value Et, is in
the lower tail if Pr(ET, < Et) is a small probability, and
in the upper tail if Pr(TI > Et is a smal. To be
specific, consider the upper tail. The relevant probabil-
ity is

Pr(ET > Et,) = fPr(T,> Et,14 A)fw() dA. (6.25)

The inner conditional probability can be evaluated by
using the fact that the distribution of ET,, given A, is
gamma(n, A). If the prior distribution of A is not conju-
gate, the integral in Equation 6.25 must be evaluated
numerically, just as in Sections 6.2.3.5 and 6.3.3.4:
either (a) compute the integral using numerical integra-
tion, or (b) generate a random sample of A values from
the prior distribution, find Pr(ET, > Et, I A) for each
such A, and find the average of these probabilities as the
overall probability.

Treatment of the lower tail follows the same pattern.
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If the prior distribution of A is conjugate, that is,
gamma(s, A), then Equation 6.25 simplifies. By
working out the integrals it can be shown that ET/(ET,
+ fAi has a beta(n, a) distribution. Equivalently, ft(ET,
+ if) has a beta(a, n) distribution. These are marginal
distributions corresponding to Equation 6.25, from
which A has been integrated out. Therefore, if Eti /(Eti
+fl) is in either extreme tail of a beta(n, a) distribution,
or equivalently, if /l(Et, +fA) is in either extreme tail of
a beta(a, n) distribution, then the gamma(a, 6l prior
distribution is questioned.

In Example 6.12, suppose that the only events of
interest are those in the group of S (shutdown)
events. Suppose also that the times are assumed to
be exponential(A) - the realism of that assumption is
not the subject of the present investigation. Finally,
suppose that A is assigned a gamma(2, 30) prior
distribution, roughly equivalent to two prior observed
times with total duration of 30 minutes. The shape
parameter of only 2 means that the prior is not very
informative, so we expect the data to be consistent
with it, unless 30 minutes is very unrealistic.

From Table 6.15, we find n = 62 and the total of the
durations is 62x92.3 = 5722.6. The beta tables in
Appendix C assume that the first beta parameter is
smaller than the second, so it is convenient to work
with the beta(2, 62) distribution rather than the
beta(62, 2) distribution. Therefore, we ask if

30/(5722.6 + 30) = 5.2E-3

is in either tail of a beta(2, 62) distribution. Table C.5
shows that the 5th percentile of the beta(2, 62)
distribution is roughly 6E-3 (it is an interpolation of
7.01 E- 3 and 3.53E- 3 in the table). Table C.6 shows
that the 2.5th percentile is roughly 4E-3. So the
observed value is somewhere between the 2.5th and
5th percentiles of the predictive distribution. This
means that the prior may need rethinking. It should
either be modified or it should be justified more
carefully. (In the present example the prior came out
of thin air, but the real difficulty is that the durations
are not really exponential - the whole exercise is
only for illustration.)

6.6.2.4.2 Distributions Having Two or More
Parameters

When the topic of comparing the data to the prior arose
in connection with estimating A orp, there was a single
parameter of interest, and a single observed random
variable that contained all the information ofinterest for
that parameter. This random variable was the total
count of initiating events, the count of failures on
demand, or, in the previous section, the total duration.

However, the present subsection considers a distribu-
tion with (at least) two parameters, such as p and Dor
a and /. No single random variable contains all the
information of interest. Therefore, in such cases it is
simplest to compare the data with the prior by con-
structing:

l. a prior credible region for the two parameters, and
2. a posterior credible region based on noninforma-

rive priors.

The first case shows what the prior distribution says,
and the second case shows what the data say. Compare
the answers from I and 2 to see if the prior distribution
and the data seem consistent, that is, if the prior region
contains most of the posterior region. Instead of two-
dimensional credible regions, one might calculate
credible intervals for the individual parameters. This is
simpler, but ignores the possible correlation of the two
parameters. Because this is such an advanced topic, no
examples are worked out here.

6.6.3 Nonparametric Density Estimation

The most prevalent methods of estimating a density
function are parametric methods. As described in
Section 6.6.1.2, the density is specified in terms of a
functional form, such as lognormal or Weibull, with
unknown parameters. The parameters are then esti-
mated from the data. However, there also exist
nonparametric methods for estimation of a density
function, some of which are described here.

The simplest and best known method of estimating a
density function is to construct a frequency table, and
then to plot the histogram. This method was discussed
in Section 6.6.1.1.4. Two illustrations are given there,
Figures 6.43 and 6.44. Both use the 45 recovery times
from part T of Example 6.12. The methods discussed
below are illustrated with the same set of 45 recovery
times.

6.63.1 Smoothing Techniques and Kernel
Estimators

Smoothing techniques can be motivated by recalling
that the density function, At), is the derivative of the
c.d.f., F(t). The EDF, discussed in Section 6.6.1.1.3
and denoted by P(t), is a natural estimator of F(t).
Thus, a natural estimator of the density is the differen-
tial quotient using the EDF in place of the c.d.f.,

i F(t +h) -F( - h)
2h (6.26)
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where h is an increment of the variable t. The main
problem in applying such an estimator is to choose h 0.014
small enough so that the differential quotient adequately Rectangular Kernel (h 25)
approximates the derivative, but large enough so that 0.012
the interval with limits t ± h contains a sufficient
amount of data. e °0.010

E 0

Recall that P(t) equals the number of observations El
having a value less than or equal to t divided by the Z0.006
total number of observations, n. Therefore, Equa-
tion 6.26 can also be written as 0 0.004

n()nh ,= I (~ _h I (6.27)

where K is a function defined as K(u) = 1/2 if u is
between ± 1, and zero otherwise, and t1 is the ith obser-
vation. Notice that an observation t, only enters into
this calculation if (Q, - t)/h is between ± 1, or in other
words if t, is near t; specifically if to is within h units of
t. Thus, the estimate is based on averaging values of
1/2 when observations are near t. This is a special case
of a general type of estimator known as a kernel
density estimator. The function K(u) is called the
kernel and the increment h is called the bandwidth.
The bandwidth defines a "window", centered at t and
having width 2h, which contains the data involved in
the estimate at the point t.

Figure 6.56 Density estimate of the data from group
T in Example 6.12, with rectangular kernel and
bandwidth 25.
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6.6.3.1.1 The Rectangular Kernel 0.002

When graphed, the kernel corresponding to Equa-
tion 6.27 is a rectangle of height 112 and width 2h. The
resulting estimator is illustrated here with group T of
Example 6.12 and two bandwidths.

Figure 6.56 shows a graph of the estimate of the
density when the bandwidth is h = 25 minutes.
Notice that the estimated density is zero in the
interval roughly from 150 to 250 minutes. This
corresponds to the fourth and fifth bins of the histo-
gram of Figure 6.43, both of which were empty.

It is also evident that the graph is somewhat jagged,
indicating that the bandwidth may be so small that
not enough data are being captured in the window.

The vertical dashed line marks the point t = 0, to be
discussed later.

Consider now a rectangular kernel estimate with the
same data but with a larger bandwidth, h = 50
minutes. The results are shown in Figure 6.57.

o.oo0
Recovery Times (min.)

Figure 6.57 Density estimate of the data from group
T in Example 6.12 with rectangular kernel and
bandwidth 50.

There is still some jaggedness, but it is somewhat
less than in Figure 6.56. There is still a noticeable
low point in the vicinity of 200 minutes, but it is
narrower than in Figure 6.56.

It is clear that by smoothing over a very wide window,
any features can be smoothed ouL For this reason, it is
desirable to give some thought to whether there is some
explanation for low density. In other words, are these
real effects or are they just due to randomness? If the
low estimates can be explained by something other than
random fluctuation, smoothing would tend to hide this
fact, but if they are due to randomness, then smoothing
should be helpful.
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This issue was also seen with histograms. Choosing too
narrow bins for the size of the data set caused the shape
to be influenced too much by random variation. Choos-
ing too wide bins smoothed out nearly all the variation.
The question of how much to smooth and how much
roughness to allow is inherent in all forms of density
estimation.

6.63.1.2 Boundary Problems

Notice, that as the bandwidth is increased, the interval
over which the estimated density is positive becomes
wider. This is because the window is picking up more
data as it gets wider. This causes the anomaly that the
estimated density is positive over negative values of the
t axis, even though t represents a positive variable,
namely recovery time. The vertical dashed line marks
the point t = 0 in each figure, and the portion of the
density to the left of this line is substantial. In addition,
although many values of t, are close to zero, the density
estimate decreases as t moves leftward to zero. Various
methods have been suggested for correcting the esti-
mate at the boundary of the possible region.

Silverman (1986) gives a method that is very easy to
implement. If the density is allowed to be positive only
for t 2 0, augment the data by reflecting it around 0.
That is, create a new data set that consists of

I...,-t2 -tlt], t2 ,... I.-

Estimate the density based on this data set. Call this

estimate f (). The integral from -- to - of f () is

1.0, because I is a density. Also, if the kernel is a
symmetrical function, then 7 is symmetrical around

zero, that is, f(-t) = f(t). Now, define the real
density estimate by

f(t)=O fort<O

f(t) = 2f (t) fort 2. 0.

Then, j is a density that is zero for negative t and
nonnegative for positive t. It estimates the unknown
true density.

Figure 6.58 shows the resulting estimate with the
data of this section, when the kernel is rectangular
and the bandwidth h = 50. This estimate can be
compared with Figure 6.57.

0.012

Rectangular Kernel (h = 50)

0.010

-0 .008

La 0.006

o 0.004

0.002

0.000 0 100 200 300 400 500 600
Recovery Times (min.)

Figure 6.58 Density estimate from group T of
Example 6.13, with rectangular kernel and bandwidth
50, forced to be nonzero on positive axis only.

For large t, this estimate is very similar to that of
Figure 6.57. However, it is quite different for t near
zero. The density is not plotted for t< 0, but it equals
zero there.

The simple method just given forces the density esti-
mate to have slope zero at the boundary. Those who
want to allow a density estimate with nonzero slope at
the boundary can see Hart (1997, Sec. 2.5). Techni-
cally, Hart's book deals with smoothing a scatter plot,
but the method given there can be adapted as follows to
smoothing a density estimate: construct a rough histo-
gram density estimate, place a dot at the top of each
histogram bar (including the bars with height zero!),
and treat those dots as a scatter plot.

6.63.13 The Triangular Kernel

It may also be desirable in some cases to give less
weight to the data in the extremes of the window and to
produce a smoother graph. This can be accomplished
by choosing a different function for the kernel. A very
simple one which does this is the function K(u) = 1- PI
if u is between : 1, and zero otherwise. The graph of
K(u) is an isosceles triangle with a base two units in
width. This kernel gives more weight to the data in the
middle of the window and less to data at the sides of the
window. It is also possible, by choosing a kernel func-
tion with a smoother graph, to produce a kernel esti-
mate which is also smoother. The normal kernel, given
next, is such a smooth kernel.
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6.6.3.1.4 The Standard Normal Kernel

A kernel function that is often used is the standard
normal kernel, equal to the standard normal p.d.f.,
which is given in Appendix A.7.2.

Figure 6.59 shows the density estimate for the same
recovery time data, but using the standard normal
kernel and bandwidth 25. The density has been
made positive on the positive time axis only, by the
technique of Section 6.6.3.1.2.

0.014
Standard Normal Kernel (h = 25)

0.012

,0.010
'a
E0.008

Z-0.006V

°0.004

0.002 \
.0.0O6

0.000 100 200 300 400 500 600
Recovery Times (min.)

Figure 6.59 Density estimate of the data from group
T in Example 6.12, with standard normal kernel and
bandwidth 25.

The resulting plot is clearly much smoother than the
ones obtained using the rectangular kernel. The
increased smoothness is provided by the standard
normal kernel, which is differentiable everywhere.
The low estimate of density near 200 is still present,
but the low spot does not drop to zero as it did in
Figure 6.58. This is because the standard normal
kernel is always positive. Even though this kernel
gives less weight to data which are farther from the
center of the kernel, it makes use of every observa-
tion in the data set. Consequently, with the standard
normal kernel, all terms in the density estimate of
Equation 6.27 are positive, although the extreme
ones will tend to be relatively small.

For the sake of comparison, Figure 6.60 shows the
standard normal kernel estimates for bandwidth h =
50.

Although the graphs shown in Figures 6.59 and 6.60
retain some general features of the graphs in Figures
6.56 through 6.58, they are somewhat smoother. As
mentioned in the case of the rectangular kernel in

Section 6.6.3.1.1, this type of smoothing is desirable if
the sparsity of data in these intervals is due to random-
ness, but possibly undesirable if there is an explanation
for the sparseness.

0.010
Standard Normal Kernel (h = 50)

0.008

E 0.006
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0.002

0.000 . <- , .
.00 100 200 300 400 500 600
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Figure 6.60 Density estimate of the data from group
T in Example 6.12, with standard normal kernel and
bandwidth 50.

6.63.2 Choosing the Bandwidth

General guidelines for choosing a kernel and bandwidth
are difficult to formulate. The choice of a bandwidth
always involves a trade-off between bias and variabil-
ity. An attempt to reduce bias generally requires a
small bandwidth, but this tends to result in a large
variance. On the other hand, choosing a large band-
width will reduce the variance, but at the expense of
increasing the bias. A criterion which accounts for
both the bias and variance is based on a quantity called
the mean squared error (MSE) which is equal to the
mean squared difference between the unknown parame-
ter and its estimator. It is easy to show that

MSE = (bias)2 + variance of estimator

so that as the MSE approaches zero, both the bias and
the variance of the estimator also approach zero.

A reasonable choice of bandwidth should take into
account the amount of data, and so the solution must
depend on n. Thus, we consider a sequence, h = h(n).
The sequence should converge to zero, but not too
quickly or too slowly. It is known, for example, that
under certain fairly modest assumptions, a desirable
form for the bandwidth is

h(n) = cn1' 15.
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The main problem is that calculation of the constant c
requires more than is typically known about the p.d.f. to
be estimated, and it also depends on the choice of a
kernel. For example, according to p. 45 of Silverman
(1986), for the standard normal kernel, and assuming
the distribution of the data to be normal with standard
deviation o, the bandwidth which minimizes the inte-
grated MSE asymptotically is

h(n) = 1.06on" 5 .

Notice that the constant c in this case requires that the
standard deviation be known or at least estimated.

For example, with the recovery time data, the sample
standard deviation, given in Table 6.16, is 99.9
minutes. If this is used to estimate o, then the
optimal bandwidth is h(n) = 105.9n115. Using the
sample size n = 45 yields h = 49.5. This result is
very nearly the bandwidth of 50 minutes that was
used in Figure 6.60.

Keep in mind that this choice of bandwidth was derived
for the case where both the distribution being estimated
and the kernel are normal, so the result would be good
with-these assumptions. However, this might be a good
place to start if trial and error is used to determine what
bandwidth to use. In other words, if it is not clear what
to assume, then it would be best to try a few different
bandwidths and choose one which provides some
smoothing, but does not obscure basic features. As
Silverman says, "There is a case for undersmoothing
somewhat; the reader can do further smoothing 'by eye'
but cannot easily unsmooth."

Another problem that often occurs in practice is that the
data will be plentiful in some parts of the range, but
sparse in others. This is typical with data from highly
skewed distributions. For example, with a positively
skewed distribution, such as any of the distributions in
Section 6.6.1.2, there will tend to be more data in the
lowerend than in the upper tail. This would suggest the
desirability of having a bandwidth that varies with t, so
that a shorter increment can be used in the lower end
where the data points are more abundant, and a larger
increment used in the upper tail where there are not as
many points. This idea is not developed here, but such
methods exist. For additional reading on this topic, see
the discussions of the nearest neighbor method and the
variable kernel method in Silverman (1986).

6.7 Unavailability

Data analysis methods for unavailability do not have the
long history that they have for other parameters. Most
of the material here is taken directly from a paper by

Atwood and Engelhardt (2003). Users of the methods
described below should refer to the final peer-reviewed
and published version of the article.

As in Section 2.6, the discussion here is presented in
terms of trains, although other hardware configurations,
such as individual components, could be considered.
The terminology of Section 2.6 will be used: outage
times are random and the unavailability is a parameter,
an unknown constant, denoted here by q. Subscripts,
such as "planned" and "unplanned," can be attached to
q for clarity if needed.

Two possible kinds of data are considered:

* Detailed data: the onset time and duration of each
individual outage are recorded, as well as the total
time when the train should have been available.

* Summary data: the history is grouped into report-
ing periods, such as calendar months, and the total
outage time and total exposure time are recorded
for each reporting period.

The methods of this section are illustrated with
Example 2.16, taken from Atwood and Engelhardt
(2003). This example concerns the unavailability of
a train in a two-train CVC system. The 21 outages
are given in Table 6.17, and monthly summary data
are shown in Table 6.18. All times are in hours.

6.7.1 Analysis of Detailed Data

Denote the mean duration of an outage by MTTR, an
acronym for mean time to repair. Similarly, denote
the mean duration of the period between outages (the up
time) by MTTF, an acronym for mean time to failure.
Both of these can be estimated when the individual
outage times and exposure times are recorded.

Under the model assumptions given in Section 2.6.2, it
can be shown (see Ross 1983, pp. 66-67) that the
unavailability equals

MTTR

q =M7TJF +M77TR
(6.28)

This provides a basis for estimating availability and
unavailability when the full duration data are recorded.

Upon reflection, this striking result is not surprising. If
the data consist of n up times, with n down times
interspersed, MTTR would be estimated by (total down
timeyn, and MTTF would be estimated by (total up
time)In. Based on Equation 6.28, the natural estimate
of unavailability would be
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[down-time/nll[up-time/n + down-timelnj
= down-timel(up-time + down-time),

which is just the observed fraction of time when the
system is down.

Table 6.17 Detailed data for Example 2.16.

Table 5.18 Summary data for Example 2.16.

| Train I Train I Train2
___ I____Exposure Outages I Outages

1 364 0 0

2 720 25.23 24.88
75.08

3 744 0 0

4 711 23.45 0

5 621 9.75 15.15
0.49 1.02
1.24 0.49

6 502 0.34 4.43
2.90 0.34
4.43

7 0 0 0

8 637 18.02 12.47
9.48

18.02

9 676 0 0

10 595 0 0

11 600 11.05 0

12 546 0 0

13 745 0 52.25

14 720 0 0

15 744 0 0

Total 8,925 96.90 213.61

Trai n Train 1 | Train 2 | Total
|Month Exposure Outage Outage Outage
lj_______ j Time Time rTme

1 364 0 0 0

2 720 25.23 99.96 125.19

3 744 0 0 0

4 711 23.45 0 23.45

5 621 11.48 16.66 28.14

6 502 7.67 4.77 12.44

7 0 0 0 0

8 637 18.02 39.97 57.99

9 676 0 0 0

10 595 0 0 0

11 600 11.05 0 11.05

12 546 0 0 0

13 745 0 52.25 52.25

14 720 0 0 0

15 744 0 0 0

Tta 8.925 1 96.9a [ 213.61 310.51

In addition, MTTF + MMT is the mean time from one
outage onset to the next, which can be interpreted as the
reciprocal of the outage frequency. Therefore, the
unavailability can be rewritten as

This is the moment estimate, replacing the means in
Equation 6.28 by the sample means. It is a natural,
intuitively appealing point estimate.

For the data of Example 2.16, either Table 6.17 or
6.18 shows that the estimate of q is 310.51/17850 =
1 .74E-2. (Note, the exposure time of 8925 hours for
a single train must be doubled to get the total train-
exposure-hours for the full data set.)

A confidence interval is not easy to construct There-
fore, we leave frequentist estimation and proceed at
once to Bayesian estimation.

6.7.1.2 Bayesian Estimation under Simple
Assumptions

The simplest assumptions are that:

* the outages occur according to a Poisson process
with frequency Afm, and

* the outage durations have an exponential(Adr)
distribution.

The first assumption is essentially true if the up-times
have an exponential distribution and MTTF >> M`T.
Then the time from one outage onset to the next is
dominated by the time up, which is exponentially

. i

q = (outage frequency)
x (mean outage duration) . (6.29)

This equation is the foundation of all the methods for
using detailed data to estimate q.

6.7.1.1 Frequentist Point Estimate

Suppose that n outages are observed in, exposure time
t:., with total outage duration tar, Based on Equation
6.29, the simple frequentist point estimate of q is

(nlit.,)x(tQiJn) = tdw't-xpos
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distributed. The parameter w.,can be interpreted as the
reciprocal of the mean outage duration. Here, both
parameters have units 1/time.

The conjugate prior for A, can be denoted
gamma(afr, Al o) as stated in Section 6.2.2.4. 1. The
conjugate prior for 4dd, can be denoted gamma(ad,,,O,
Pfld.o), as stated in Section 6.6.1.2.2. As above, suppose
that n outages are observed in exposure time t,,., with
total outage duration td,. The posterior distributions
are

2f, - gamma(ef,t, 8fi., 1)
4dr, - gamma(ade1,., A l)

where

., = afrt,o + n

Amfr.i = Pflfq.O + t"pos
Awr = dir,.O + n
6dur. = Adv.o + td.,

Table 6.17 shows 21 outages, with a total duration
t,= 310.51 train-hours, and atotal exposure time for
the two trains tL, = 17,850 train-hours. First, let us
examine the assumptions, and then perform the
calculations.

Section 2.6.2 lists an assumption about the inde-
pendence of durations. Atwood and Engelhardt
(2003) point out that Table 6.17 shows two instances
when both trains were out for exactly the same
amount of time in the same month. This is probably
not coincidence, but indication that both trains were
briefly taken out of service together, violating the
independence assumption. However, the affected
outage time is less than 1% of the total outage time,
so Atwood and Engelhardt feel that the violation of
the assumption is not serious.

Section 6.6.2.3.1 presents a 0-Q plot for checking
whether durations follow an exponential distribution.
The resulting plot for the present outage-duration
data is given as Figure 6.61.

By Equation 6.29 we have

q =

which is proportional to the ratio of two chi-squared
variables, because the chi-squared distribution is a re-
expression of the gamma distribution. In addition, it is
reasonable to think that the posterior distributions are
independent; that is, if the outage frequency were to
increase or decrease, this would provide no information
about whether the mean outage duration increases or
decreases. Therefore, q is proportional to the ratio of
two independent chi-squared variables. However, the
ratio of two independent chi-squared distributions, each
divided by its degrees of freedom, has an Fdistribution,
as is shown in many books on statistics and stated in
Appendix A.7. 11. It follows that q is distributed as

The two quantities in parentheses following the F are
the two parameters of the distribution. Selected percen-
tiles of the Fdistribution are tabulated in many statistics
books. They are not tabulated in this handbook because
they are calculated by many software packages, includ-
ing spreadsheets such as Microsoft Excel (2001) and
Quattro Pro (2001). Facts about the F distribution are
given in Appendix A.7.1 l.

If the Jeffreys noninformative priors are used, the
posterior distribution of q is

�5
a

!2-

0I

0 aD 40 W

Figure 6.61 0-0 plot for checking whether durations
have exponential distribution In Example 2.16.

The line is not perfectly straight. The two largest
times are a bit too large, and there are too many very
small times. Thus, the true distribution Is apparently
more skewed than an exponential distribution.
Nevertheless, we will assume that the exponential
distribution is approximately correct, while recogniz-
ing that the resulting uncertainty intervals are not
exact.

Atwood and Engelhardt use a similar plot to check
the Poisson assumption for the outage count. More
precisely, they Investigate whether the times be-
tween outage onsets are exponential, which they
should be If the outages follow a Poisson process.
The outage onset times are not given in Table 6.17,
but the authors assume that outages are approxi-
mately uniformly spaced in the month in which they(tdltf,,,)[(n+0.5yn]F(2n+ 1. 2n) . (6.30)
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occur. Under this approximation, the times between
outage onsets result in Figure 6.62.

25

2.0

1.0

0.5

0.00 o
0 1000 2000 31000

Observed M between outage tIe

Figure 6.62 0-0 plot for examining whether times
between outages are exponential.

This figure shows the same general curvature as
does Figure 6.61, but with even more curvature,
suggesting that the distribution is more skewed than
an exponential distribution. Atwood and Engelhardt
recognize this fact but choose to press on with the
analysis anyway.

Informative priors would be easy to use, but for this
illustration we use the Jeffreys noninformative priors,
resulting in a posterior distribution given by Expres-
sion 6.30. This says that the unavailability q has a
distribution

(310.51117850)(21.5121) F(43, 42).

The 5th and 95th percentiles of the Fdistribution with
43 and 42 degrees of freedom are 0.601 and 1.667.
These percentiles are given by many software
packages. Therefore, the 5th and 95th percentiles of
q are 1.07E-2 and 2.97E-2. The mean is

(310.51/17850)(21.5)21) (42/40) = 1.87E-2,

using the formula for the mean of an F distribution
from Appendix A.7.1 1. As a sanity check, this can
be compared with the simple estimate given in
Section 6.7.1.1, 310.51/17850 = 1.74E-2.

6.7.13 Model Validation

If the durations appear to be exponentially distributed,
and the counts appear to have a Poisson distribution,
one may then investigate the other assumptions listed in
Section 2.6.2. Independence is difficult to verify from
data, and is more likely verified by careful thinking. As
for the assumption of a common distribution for all the

down times and a common distribution for all the up
times, the methods of Section 6.6.2 can be used: tools
for investigating whether different portions of the data
have different distributions, or whether a trend is
present. The analyst must decide whether the data set
is large enough to deserve this effort.

6.7.1.4 Bayesian Estimation under Other
Assumptions

If the outages do not follow a Poisson distribution or if
the durations do not follow an exponential distribution,
Equation 6.29 can still be used, but it is much more
difficult to estimate the two pieces of the equation.
Atwood and Engelhardt (2003) discuss this issue very
briefly. It will not be considered further here. Instead,
we proceed now to methods that do not require
assumptions on the forms of the distributions.

6.7.2 Analysis of Summary Data

The task now is to use the summary data only, not the
data from individual outages, to obtain a Bayesian
distribution for q. The fundamental technique is data
aggregation to yield quantities X1that are approximately
independent and identically normally distributed, as
described next. Atwood and Engelhardt (2003) are
unable to prove theoretically that aggregation must
result in normally distributed Xi. However, they per-
form simulations of representative cases and show that
asymptotic normality occurs in those cases.

For ease of wording, we assume that the reporting
periods are months, as they are in Example 2.16.

6.7±L1 Data Aggregation

Denote the exposure time for the ith train-month by e,
and denote the corresponding outage time by o,. The
corresponding simple point estimate of the unavailabil-
ity q is the ratio x, = o0e. This gives one such estimate
of q for each train-month of data. The estimate from
any one train-month is not very good, because it is
based on only a small data set. Indeed, if e, = 0 the
estimate is undefined.

The data may contain many zeros, as seen in Table
6.18. As a result of the many zeros and few relatively
large outage times, the data can be quite skewed. To
eliminate some of the zeros and make the data less
skewed, the data can be pooled in various ways. For
example, the rightmost column of Table 6.18 shows the
total outage time for the two trains. Similarly, the data
could be aggregated by time periods longer than one
month, such as by calendar quarter or calendar year.
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This aggregation over time could be done separately for
each train or for the pooled data from the trains.

This aggregation groups the data into subsets, for
example train-months (the least aggregation), or train-
quarters, or system-months, etc. Note, we are still
trying to estimate the train unavailability, not system
unavailability, even if we pool the data from both trains
in the system. Let oj and e1 now denote the outage time
and exposure time for the ith subset. The simple
moment estimate of q based on the ith subset is x, =
o/ei.

In the data of Table 6.18, if the two trains are pooled
the total train exposure time for month 2 is e2 = 720
+ 720 = 1440 hrs, and the total train outage time is 02
= 125.19 hrs. The estimate based on this one month
is 125.19/1440 = 8.69E-2. If calendar quarters are
pooled but trains are not pooled, the total train
exposure time for Train 1 in quarter 3 Is e3 = 0 + 637
+ 676 = 1313 hrs, and the corresponding train outage
time is o = 0 + 18.02 + 0 = 18.02 hrs. The estimate
of q based on this one train-quarter is 18.02/1313 =
1.37E-2.

Whatever level of aggregation is used, this approach
pools the numerators and denominators separately
within each subset and then calculates the ratio.

The purpose of this aggregation is to produce multiple
estimates o/e; that we denote generically as x,. The x,
values must all come from a single distribution. There-
fore, the pooling assumes that the parameter q does not
change within the data set, and that the various subsets
of the data (calendar quarters or years, etc.) have
similar exposure times, so that the random xjs all come
from close to the same distribution.

In addition, the distribution of the xs should be approx-
imately normal. A normal distribution would not
generate repeated values, such as multiple observed
values of zero, nor would it produce strongly skewed
data. Therefore, we must aggregate enough to obtain
data that are not skewed and do not have repeated
values.

How much aggregation is necessary? To investigate
this question Atwood and Engelhardt (2003) perform
some simulations, which indicate that minimal aggre-
gation is not enough. In fact, the example data set
should be many times larger than it is to make the
method work really well. If an analyst has a large
enough data set so that there is a choice between little
aggregation into many subsets or much aggregation into
few subsets, the second choice is the better one.

Table 6.19, from Atwood and Engelhardt (2003)
gives some sample statistics for x, based on various
amounts of aggregation of the data of Table 6.18.
The skewness is a measure of asymmetry. Positive
skewness corresponds to a long tail on the right.
Zero skewness corresponds to a symmetrical distri-
bution.

Table 6.19 Sample statistics for estimates of q,
with different levels of aggregation.

ITrain- System- Train- system-
________ month lmonth iquarter quarter

In 28 14 10 5
Mean 1.63E-2 1.63E-2 1.78E-2 1.78E-2
Median 0.OOE+0 4.60E-3 1.38E-2 1.75E-2
St. dev., s 3.07E-2 2.51E-2 1.64E-2 1.16E-2
AnonrJ 5.81E-3 6.70E-3 5.18E-3 5.19E-3
Skewness 2.79 2.02 1.25 0.33
No. zeros 17 7 2 0

The 28 values of xcorresponding to train-months do
not come from a normal distribution. They are too
skewed, as is seen by the fact that the mean
(1.63E-2) is very different from the median (0), and
the skewness (2.79) is far from zero. Also, they have
many occurrences of a single value, 0. Pooling the
two trains into 14 subsets somewhat reduces the
skewness and the percentage of zeros.

Pooling the three months for each train makes the
distribution still more symmetrical: the mean and
median are within 30% of each other, and the skew-
ness is down to 1.25. When the data are aggregated
by pooling trains and by pooling months into quar-
ters, multiple values of zero are finally eliminated,
and the distribution appears to be more nearly
symmetrical: the mean and median are within 2% of
each other, and the skewness is moderately small.
This suggests that the five values of x, may be
treated as a random sample from a nomial distribu-
tion.

To investigate this further, a 0-0 plot was con-
structed, as in Section 6.6.2.3.1. The plot given by
Atwood and Engelhardt (2003) does not use the
expected order statistics as in Figure 6.53, but
instead is a different version of the plot. The authors
found it easier to plot the ith order statistic against
0P1[#(n+1)j, where 0 is the standard normal cumula-
tive distribution function given In Table C.1. The plot
is shown here as Figure 6.63.
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Figure 6.63 Q0- plot for investigating normality of x
when trains are pooled and months withing quarters
are pooled.

The points lie almost on a straight line, indicating
consistency with the normal distribution. For this
reason, the authors treat the xvalues as coming from
a normal distribution, when the data are aggregated
to this degree. A goodness-of-fit test could be
performed, but it would not be able to detect non-
normality based on only five points.

ratios for the subsets would treat the data from quarter
3 with as much weight as the data from the other
quarters. Summing the outage times and exposure
times first, before taking the ratio, gives quarter 3 only
the weight that it should have.

A method to obtain a confidence interval for q uses
facts about normally distributed random variables that
are presented in many statistics books, and summarized
here.

When (xl, ..., x,) is a random sample from a normal(s
o2) distribution, the usual estimates of Jp and d are:

1

n

and

2
SZ = - I i(X,_1)2-

(Note the n - I in the denominator, although some
authors use n, and therefore use slightly different
formulas below.)

As mentioned above, more aggregation would make
the method work better. However, with the present
very small data set, little more aggregation is possi-
ble.

There is a problem with the third quarter, because it
has smaller exposure time than the other quarters.
That means that x corresponding to this quarter has
larger variance than the others. This is ignored here,
but if the exposure time for quarter 3 had been even
smaller, we might have dropped that quarter from the
analysis, or pooled differently.

We repeat: The only purpose of the data aggregation is
to eliminate the skewness and eliminate multiple values,
thus permitting the use of normal methods. To the
extent possible, we pool so that the aggregated subsets
have similar exposure times, in order to have x values
that come from a common distribution.

6,7.2.2 Frequentist Estimation

The same frequentist estimate of q can be used as with
detailed data, the sum of the outage times divided by
the sum of the exposure times. This ratio of the sums is
not quite the same as the average of the ratios from the
data subsets, because the various subsets are not based
on the same exposure times. For example, in Example
2.16 quarter 3 has fewer exposure hours. Averaging the

The distribution of X is normal(/4 or2n). When both
# and 02 are unknown, a 100(1-a)% confidence
interval for p is

5F ± t,-,,2 (n - I)s, I irn- , (6.32)

where tj ,2(n - 1) is the I - &2 quantile of the Student's
t distribution with n - I degrees of freedom. For
example, to95(n- 1) gives a two-sided 90% confidence
interval. Student's tdistribution is tabulated in Appen-
dix C, and is calculated by some software packages.
Do not misread the (n - 1) as a multiplier, it is a
parameter, the degrees of freedom, of the Student's t
distribution. In Table C.3 each row of the table corre-
sponds to one value of the degrees of freedom.

In Example 2.16, we aggregate by system and
calendar quarter, and use the resulting five values of
x as if they are a random sample from a normal
distribution. In the formulas above, the mean pis the
unavailability, q. From Expression 6.32 and Table
6. 19, we obtain that a 90% confidence interval for q
is I

1.78E-2 ±2.132x5.19E-3
= 1.78E-2* 1.11 E-2

because 2.132 is the 95th percentile of the Student's
t distribution with 4 degrees of freedom. Thus, the
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lower and upper confidence limits are

4axo.0. = 7.E-3
qca,.0.95 = 2.9E-2.

This interval is approximate because the x values
come from an approximately normal distribution.

6.7.2.3 Bayesian Estimation

Bayesian estimates are given here. Examples are
worked out after the general formulas are given. As
above, assume that the data have been aggregated
enough so that {x,, ..., x,, is a random sample from a
normal(y, d) distribution.

6.7.2.3.1 Noninfornative Prior

The joint noninformative prior for (p., d) is propor-
tional to 11/2, as stated in Section 6.6.1.2.1 (in the
context of lognormal distributions.) As stated in that
section, the posterior distribution then results in

(j - D) 1 (s., IF r)

having a Student's t distribution with n- I degrees of
freedom. Here jp is the quantity with the Bayesian
uncertainty distribution, and everything else in the
expression is a calculated number. In the present
context, # is the unavailability, q. It follows that the
credible intervals agree exactly with the confidence
intervals given by Expression 6.32. For example, a
90% credible interval for q is

x ± t,.9^ (n - I)s., / Fn; -

In Example 2.16, the mean p is interpreted as the
unavailability q. Based on the values of x, the
expression

(q- 1.78E-2)/5.19E-3

has a Student's t distribution with 4 degrees of
freedom. A 90%/6 credible interval is

1 .78E-2 * 2.132x5.19E-3
= 1.78E-2 ± 1.11 E-2
= (7.E-3, 2.9E-2)

which agrees exactly with the 90% confidence
interval found above.

Not all PRA software packages contain Student's t
distribution. Sometimes it is necessarily to temporarily
adjust the method to match the available software.
Analysts who are working without Student's t distribu-

tion in their software package may be forced to use a
normal distribution with the same 90% interval as the
one given by the above calculation. (To be more
conservative, match the 95% intervals or the 99% inter-
vals.) If the degrees of freedom are not too small (> 3
as a bare minimum) the approximation of a Student's t
by a normal is probably acceptable.

In the above example, a normal distribution with the
same 90% interval would have 1.645or= 1.11E-2.
Therefore, a normal approximation for the posterior
distribution of q is normal with mean 1.78E-2 and
standard deviation 6.75E-3.

6.7.2.3.2 Informative Priors

Informative conjugate priors for p and d are presented
in Section 6.6.1.2.1, along with the Bayesian update
formulas. The prior parameters are:

do = degrees of freedom for prior estimate of 6
oe = prior estimate of o; (more precisely, 1/002 is prior

mean of 110)
n. = prior number of observations (with variance o;)

for estimating p
K = prior mean of A

The update formulas are given in Section 6.6.1.2.1,
resulting in four corresponding parameter values
identified with subscript l. The final result is that the
posterior distribution of

is Student's t with d, degrees of freedom. Therefore, a
90% credible posterior interval is

Auj i to0 gs(d,)Cj /X/.

To develop an informative prior, Atwood and Engel-
hardt (2003) use some generic data from seven
plants, with a mean unavailability for CVC trains of
6E-3 and a between-plant standard deviation
3.5E-3. Therefore, they set A3 = 6E-3 and ab =
3.5E-3. They point out that this data set does not
perfectly match the (much older) data of Example
2.16. Therefore, they set nb = 3, not 7. They also
argue that the between-plant variance has little or
nothing to do with the between-calendar-quarter
variance of Example 2.16. Therefore, they set do =
-1, corresponding to no prior information about the
variance.
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The update formulas of Section 6.6.1.2.1 yield:

d,=-1 +5=4
n= 3 + 5 = 8
, = (3x6E-3 + 5x1 .78E-2)18 = 1.34E-2

= ( -1x(3.5E-3) 2 + (5- 1)x(1.16E-2) 2 +
[3x8/(3+8)](6E-3 - 1 .78E-2)2 }1/4

= 2.07E-4
= (1.44E-2) 2

Using the notation q instead of A it follows that

(q- 1.34E-2)41.44E-2)/2.83]

has a posterior Student's tdistribution with 4 degrees
of freedom. A 90% posterior credible interval for
unavailability is

1.34E-2 ±2.132x(1.44E-2)/2.83

= (3E-3, 2.4E-2).

6.7.2.4 Model Validation

A crucial feature of the simple method proposed above
is aggregation of data, to reduce skewness and achieve
approximate normality. The example analysis given
above used a Q-Q plot, Figure 6.63, to check whether
normality was achieved. In addition, other data plots
and goodness-of-fit tests can be used to check the
normality, as described in Section 6.6.2.3. However, if
the data have been aggregated into a small number of
sets, these tests and plots will probably not discover any
departure from normality - there are too few data
points. As mentioned above, to make the method work
well, one should over-aggregate, beyond what the
above analysis tools suggest is minimally acceptable.

An implicit assumption when pooling data subsets is
that the various subsets correspond to the same distribu-
tion. Therefore, one may try to check this assumption,
as follows.

The methods discussed in detail in Section 6.6.2.1 may
be used, although the data may not be of good enough
quality to show much. In particular, box plots may be
used to suggest whether subsets can be pooled. The
Kruskal-Wallis test, the nonparametric analogue of the

analysis-of-variance test for equal means of normally
distributed random variables, can be used to test equal-
ity of the unavailability in the data subsets. However.
the many observations tied at zero make these methods
difficult to apply.

6.7.3 Comparison of the Analyses with
the Two Types of Data

The approach with detailed data works most easily if
the number of outages follows a Poisson distribution
and the outage durations can be assumed to have an
exponential distribution. In that case, the posterior
distribution of unavailability is a rescaled F distribu-
tion. The assumptions of Poisson counts and exponen-
tial outage durations must be checked.

The approach with summary data uses aggregation of
the data into subsets until the estimated unavailabilities
for the various subsets appear to be approximately
normal. The resulting posterior distribution is a
rescaled Student's t. Data aggregation eliminates the
need to assume any particular distribution in the under-
lying process. However, one must confirm that approx-
imate normality has been achieved.

Both methods work easily with either noninformative
and informative priors, although the formulas for
updating an informative prior with summary data are
more intricate than when using detailed data.

The posterior distributions from the two analyses
given above for Example 2.16 are compared in Table
6.20. It can be seen that in this example the two
posterior distributions are quite consistent with each
other.

Table 6.20 Comparison of Bayeslan results
from two approaches, using
noninformative priorsI Data I Mean 1 90I Interval

Detailed 1.87E-2 (1.1 E-2, 3.OE-2)

Summary 1.78E-2 (7.E-3, 2.9E-2)
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